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A B S T R A C T

Ultrasonic cleaning is widely accepted as being an extremely efficient method of decontaminat-
ing a diverse range of objects and products. Optimization of the process is generally achieved
by variation in the intensity and the spectrum of ultrasound. This spectrum takes the form of
individual lines, which are superimposed on the noise background. The stochastic dynamics
of the bubble in the acoustic field, consisting of a strong harmonic and noise components,
is considered. Application of Lie groups reveals the internal symmetry of the problem. An
analytical solution of the problem has been derived in the vicinity of the static stability
threshold (Blake threshold). A greater understanding of the stochastic bubble dynamics leads
to determining the optimal conditions for ultrasonic cleaning.

. Introduction

The cleaning of a material plays an important role in the production of food, fabrication of electronic devices and the removal
f biological materials from an interface. The cleaning process should cause the least possible damage to the substrate. Amongst the
any possible methods to achieve these goals, ultrasonic cleaning has been found to be useful [1–3]. Ultrasound technology uses

he action of bubbles driven by ultrasonic irradiation of the media to clean an interface and cavitation is certainly a key factor in
his mechanism [4].

Once the cavitation is generated, a cavitation bubble may undergo two different kinds of radial oscillations, which are referred as
nertial and non-inertial cavitation. The former refers to the situation where the cavitation nuclei (usually microscopic pre-existing
as/vapor bubbles) grow and implode violently within a few cycles of excitation. The collapse being dominated by the inertial forces
f the moving liquid rather than the pressure and stiffness of the gas. In contrast, non-inertial cavitation is an oscillation governed
y a balance between the liquid inertia and the gas stiffness, such that bubbles can sustain the pulsation and repetitively oscillate
or a longer period of time.

The spectrum of the acoustic emission from cavitation field in liquid has the form of single lines rising above a continuum of
white’ noise base [5]. The positions of the lines correspond to harmonics, subharmonics, and ultra-subharmonics of the excitation
requency. The presence of single lines in the spectrum is related to the strongly nonlinear dynamics of gas bubbles. The commonly
ccepted explanation for the presence of the noise base is the generation of short pulses accompanying the collapse of single
nclusions. Individual spectral lines of the cavitation radiation are characterized by a finite width and even by a definite shape.

The theoretical framework is one of the key elements necessary to understand the physical processes accompanying acoustic
avitation. The progress made in the study of bubble dynamic over more than a century is reflected in recent publications [6,7] and
eviews [8,9]. Thus, a special section of the Physics of Fluids dedicated to cavitation includes 86 works [10].
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A study of the sound field generated by cavitation activity is important and the reason for researching this interaction and
eedback between the cavitation and the sound field is that ultrasonic cleaning faces technical challenges that have never been
vercome, and the root of many of these lies with an understanding of the interaction between the bubble population and the
ound field. A special issue of Ultrasonics Sonochemistry (2015;29;519–628) is devoted to the problem of cleaning with bubbles.
his paper addresses those features that do exist in the pressure field, but which differ from the idealized field used in traditional
odeling.

The bubbles with radii exceeding 10−5 m (which are the kind of bubbles we will consider in this paper) are high-Q oscillatory
ystems that suppress the oscillation spectrum outside a narrow band near the fundamental frequency; i.e., they play the role of
andpass filters. In the main order of magnitude, the bubble is not susceptible to the entire complex spectrum, but to its rather
arrow part. In this band, radiation of bubbles, randomly arranged in the cavitation field, is naturally divided into coherent and
tochastic components. To indicate the last we will use the term noise.

The effect of fluctuations associated with the random field component is found to be most pronounced in the vicinity of the
ifurcation values of the field amplitude [11,12]. These values correspond to changes in the number of stable bubble states. This
aper will consider the effect of using a less idealized driving field on the Blake threshold, which predicts the explosive grow of
ubbles in the first stage of inertial cavitation, for the limit when the driving sound field is at frequencies much less than the bubble
ulsation resonance condition.

Application of Lie groups reveals the internal symmetry of the problem. An analytical solution of the problem has been derived
n the vicinity of the static stability threshold (Blake threshold). The behavior of bubbles in these domains is characterized by
ignificantly non-Gaussian distribution of the fluctuations. This is reflected in a very specific change in the shape of the spectral
ines of acoustic emission. That, in turn, allows one to diagnose the processes occurring in a cavitation field.

. The stochastic Rayleigh equation

This section deals with the Rayleigh equation that describes nonlinear oscillations of a gas bubble in an acoustic field [4]

𝑅𝑑2𝑅
𝑑𝑡2

+ 3
2

(𝑑𝑅
𝑑𝑡

)2
−

𝑃0
𝜌0

(

𝑅0
𝑅

)3𝛾
+ 2𝜎

𝜌0𝑅
+ 2𝛿𝑅0

𝑑𝑅
𝑑𝑡

= −
[

𝑃∞ − 𝑝𝑚 cos(𝜔𝑝𝑡) + 𝑝𝑁 (𝑡)
]

𝜌−10 , (1)

where 𝑅 and 𝑅0 are the current end equilibrium radii of the bubble, 𝑃0 is the equilibrium pressure in the bubble, 𝑃∞ = 𝑃0 − 2𝜎∕𝑅0
is the external equilibrium pressure, 𝜎 is the coefficient of the surface tension, 𝜔𝑝 is the frequency of the external field, 𝛾 is the
polytropic exponent, 𝛿 is the damping coefficient, and 𝜌0 is the density of the liquid. The noise component 𝑝𝑁 (𝑡) is described by the
additional term in the expression for the external field acting on the bubble 𝑃 (𝑡) = 𝑃∞ − 𝑝𝑚 cos(𝜔𝑝𝑡) + 𝑝𝑁 (𝑡).

To make the problem a closed one, it is necessary to describe the characteristics of the random force. We use the most simple
orce model in the form of a delta-correlated random process ⟨𝑝𝑁 (𝑡 + 𝑡′)𝑝𝑁 (𝑡′)⟩ = 𝐺0𝛿(𝑡), where 𝐺0 is the intensity of the delta
orrelated process.

The Rayleigh Eq. (1) can be transformed to the dimensionless vector form of the Langevin equation that is the traditional form
or analysis of stochastic processes [13].

�̇�1 = 𝑥2,

�̇�2 =
1
𝑥1

[

−3
2
𝑥22 − 2𝛿𝑥2 +

1
3𝛾(1 + 𝜂)

(

(1 + 𝛼)

𝑥3𝛾1
− 𝛼

𝑥1
− 𝑢1

)]

−
�̃�𝑁 (𝑡)

3𝛾(1 + 𝜂)𝑥1
,

𝑥1 =
𝑅
𝑅0

, 𝑥2 =
1

𝛺0𝑅0

𝑑𝑅
𝑑𝑡

= 𝑑
𝑑𝜏

(

𝑅
𝑅0

)

= �̇�1, 𝜏 = 𝛺0𝑡, 𝛿 = 𝛿∕𝛺0,

𝛼 = 2𝜎∕
(

𝑃∞𝑅0
)

, 𝛺2
0 = 𝛺2

𝑒 (1 + 𝜂), 𝛺2
𝑒 =

(

3𝛾𝑃∞

𝜌0𝑅2
0

)

, �̃�𝑚 = 𝑝𝑚∕𝑃∞,

�̃�𝑁 = 𝑝𝑁∕𝑃∞, 𝜂 =
3𝛾 − 1
3𝛾

𝛼, 𝑢1 = 1 − �̃�𝑚 cos
[

(𝜔𝑝∕𝛺0)𝜏
]

. (2)

From the rigorous mathematical point of view, these equations cannot be analyzed as a set of differential equations owing to the
fast and irregular oscillations of �̃�𝑁 , but can be considered as an Ito system [13].

𝑑𝑥𝑖 = 𝑓𝑖(𝐱, 𝜏)𝑑𝜏 + 𝜎𝑖𝑘(𝐱, 𝜏)𝑑𝑤𝑘(𝜏), (3)

where 𝑓𝑖(𝐱, 𝜏) is the drift vector, 𝜎𝑖𝑘(𝐱, 𝜏) is a nonzero diffusion matrix, and 𝑤𝑘(𝜏) are independent homogeneous standard Wiener
processes, so that ⟨|𝑤𝑖(𝜏′) −𝑤𝑘(𝜏)|

2
⟩ = 𝛿𝑖𝑘𝛿(𝜏′ − 𝜏). Here ⟨⋯⟩ denotes ensemble average. In the case considered here, we have:

𝑓1 = 𝑥2, 𝑓2 =
1
𝑥1

[

−3
2
𝑥22 − 2𝛿𝑥2 +

1
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(
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− 𝛼
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,
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1
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𝑡

0
𝑑𝑡′𝑝𝑁 (𝑡′). (4)
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The general method of the description of the evolution of the system (3) is based on the solution of the Einstein–Fokker–Planck
EFP) equation for the probability density of the dynamical states 𝑊 (𝐱, 𝜏) = ⟨𝛿 (𝐱 − 𝐱(𝜏))⟩ [13]. The EFP equation associated with
he Ito Eq. (3) has the following form:

𝜕𝜏𝑊 (𝐱, 𝜏) + 𝜕𝑖
[

𝑓𝑖(𝐱, 𝜏)𝑊 (𝐱, 𝜏)
]

= 1
2
𝜕2𝑖𝑗

[

(

𝜎𝜎𝑇
)

𝑖𝑗 𝑊 (𝐱, 𝜏)
]

. (5)

The explicit form of the EFP equation corresponding to (4) is

𝜕𝑊 (𝐱, 𝜏)
𝜕𝜏

+ 𝜕
𝜕𝑥1

[

𝑥2𝑊 (𝐱, 𝜏)
]

+ 𝜕
𝜕𝑥2

{

1
𝑥1

[

−3
2
𝑥22 − 2𝛿𝑥2

+ 1
3𝛾(1 + 𝜂)

(

(1 + 𝛼)

𝑥3𝛾1
− 𝛼

𝑥1
− 𝑢1

)

]

𝑊 (𝐱, 𝜏)
}

= 𝐷
𝑥21

𝜕2𝑊 (𝐱, 𝜏)
𝜕𝑥22

,

𝐷 =
𝐺0𝛺0

18𝛾2(1 + 𝜂)2𝑃 2
∞
. (6)

Eqs. (2) and (6) contain the same statistical information [13].
The presence of a relatively small random perturbation can lead to noticeable effects only near singular dynamic states of the

bubble. Solving Eq. (2) with the use of an asymptotic expansion in the small parameter 𝜖 = |𝑅 − 𝑅0|∕𝑅0 ≪ 1 allowed us to conduct
he analysis in the vicinity of the fundamental resonance, the first and second harmonics, and the first and second subharmonics [11].
hese results are correct to third order terms in 𝜖. The application of numerical methods in analyzing the nonlinear dynamics of a
ubble in the resonance and noise fields has been a natural continuation of this study [12]. Nevertheless, it is desirable to formulate
he models which will not be based on perturbation techniques for analyzing this highly nonlinear phenomenon.

. Symmetry of the stochastic Rayleigh equation

Symmetry methods are by now recognized as one of the tools for solving deterministic differential equations. The application of
he theory of continuous groups [14–17] for analyzing the symmetry of equations of bubble dynamics made it possible to obtain
ew integrals of motion and exact analytical solutions [18,19].

A symmetry group of a system of differential equations �̇�𝑖 = 𝑓𝑖(𝐱, 𝜏) transforms solutions of the system to other solutions, and
s the local group of transformations acting on the independent and dependent variables of the system. An important element of
ie group theory and transformation groups is the infinitesimal transformation, by which one can replace the criteria for invariant
unctions and subsets by an equivalent linear condition of infinitesimal invariance under the corresponding infinitesimal generators
f the group action.

For the case of system of first order ODE �̇�𝑖 = 𝑓𝑖(𝐱, 𝜏) the general form of Lie-point vector field (infinitesimal generators) is
= 𝜒(𝐱, 𝜏)𝜕𝜏 + 𝜉𝑖(𝐱, 𝜏)𝜕𝑖 and symmetries of this system are given by 𝐗 as above with coefficients satisfying

𝜕𝜏
(

𝜉𝑖 − 𝜒𝑓𝑖
)

+
(

𝑓𝑗 ⋅ 𝜕𝑗
)

𝜉𝑖 −
(

𝜉𝑖 ⋅ 𝜕𝑗
)

𝑓𝑗 = 0. (7)

For given functions 𝑓𝑖(𝐱, 𝜏), corresponding to the Rayleigh equation, the partial differential Eqs. (7) have the following
olutions [18]:

𝐗1 =
𝜕
𝜕𝜏

, 𝐗2 = 𝜏 𝜕
𝜕𝜏

+ 2
2 + 3𝛾

𝑥1
𝜕
𝜕𝑥1

−
3𝛾

2 + 3𝛾
𝑥2

𝜕
𝜕𝑥2

. (8)

The first solution is realized in conditions of steady external pressure (𝜕𝑢1∕𝜕𝜏 = 0). This group is the group of time translation.
ts presence has the result that the Rayleigh equation has an integral of motion i.e. a Hamiltonian that ignores dissipation.

The second group is the group of scaling transformations 𝐺2: 𝑥′1∕𝑥1 = 𝜆2∕(2+3𝛾), 𝑥′2∕𝑥1 = 𝜆−3𝛾∕(2+3𝛾). This group is realized when
the external field takes the special form 𝑢1(𝜏) = 𝑢0

(

𝜏0∕(𝜏0 + 𝜏)
)6𝛾∕(2+3𝛾),

(

𝜏 = 𝜏0 + 𝜏
)

corresponding to a shock wave with the pressure
drop 𝑝𝑚 = 𝑢1(0)𝑃0 at the leading edge and with the characteristic fall time 𝑡0(𝜏0 ≡ 𝑡0𝛺0).

The progress achieved in studying the symmetry properties of stochastic differential equations [20–27] allows us to use this
approach to analyze the stochastic behavior of a bubble in a cavitation field. In finding the Lie-point symmetry group of the
Ito form of the Rayleigh stochastic equation (2), (4) we follow Gaeta [21,23]. It was shown by Gaeta that the vector field
𝐗 = 𝜒(𝐱, 𝜏)𝜕𝜏 + 𝜉𝑖(𝐱, 𝜏)𝜕𝑖 is a symmetry generator for the Ito equation (3) if and only if the coefficients (𝜒, 𝜉𝑖) satisfy the full
eterministic equations

𝜕𝜏
(

𝜉𝑖 − 𝜒𝑓𝑖
)

+
(

𝑓𝑗 ⋅ 𝜕𝑗
)

𝜉𝑖 −
(

𝜉𝑖 ⋅ 𝜕𝑗
)

𝑓𝑗 + (1∕2)
(

𝜎 ⋅ 𝜎𝑇
)

𝑗𝑘 𝜕
2
𝑗𝑘𝜉𝑖 = 0,

(

𝜎𝑘𝑗 ⋅ 𝜕𝑗
)

𝜉𝑖 −
(

𝜉𝑗 ⋅ 𝜕𝑗
)

𝜎𝑘𝑖 − 𝜒𝜕𝜏𝜎𝑘𝑖 + (1∕2)𝜎𝑖𝑘𝜕𝜏𝜒 = 0. (9)

For given functions 𝑓𝑖(𝐱, 𝜏), 𝜎𝑖𝑘(𝐱, 𝜏) (4) corresponding to the Rayleigh equation, the partial differential equations (9) have a
unique solution, 𝐗1 = 𝜕𝜏 , realized in conditions of steady external pressure (𝜕𝑢1∕𝜕𝜏 = 0).

It was shown by Gaeta [23] that symmetries of the Ito equation result in the symmetries of the associated EFP equation. Thus
we conclude that time translations represent a symmetry group of the EFP equation associated with stochastic Rayleigh equations
for the steady external field.
3
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The symmetries of the EFP equation are given by generators of the following form:

𝐗 = 𝜒(𝐱, 𝜏)𝜕𝜏 + 𝜉𝑖(𝐱, 𝜏)𝜕𝑖 + 𝜙𝜕𝑊 , with𝜙 = 𝐴(𝐱, 𝜏) + 𝐵(𝐱, 𝜏)𝑊 . (10)

Appealing to linearity gives us ‘‘trivial’’ symmetries 𝐗𝐴 = 𝐴(𝐱, 𝜏)𝜕𝑊 , with 𝐴(𝐱, 𝜏) an arbitrary solution of the EFP equation itself, this
s just expressing the linear superposition principle. Thus, in finding ‘‘nontrivial’’ symmetries we take 𝐴(𝐱, 𝜏) = 0. Unfortunately, the
FP equation (6) has no ‘‘nontrivial’’ symmetries except time translations.

The knowledge of the exact symmetries of ordinary differential equations allows us to reduce it, and sometimes to completely
olve it. However, in many cases one would be satisfied with an approximate rather than exact solution. It turns out, that in this
ase, situations of approximate symmetry are as good as exact ones.

. Bubble dynamics in quasi-static field

The time translation symmetry is absent for periodic driving. Nevertheless such symmetry can be restored for special cases, for
xample, when the driving period is long compared to the time scale of the bubble’s eigenoscillations (𝜖𝑝 ≡

(

𝜔𝑝∕𝛺0
)

≪ 1). Thus,
e can consider the regular part of the external pressure as quasi-static. In this case, in the leading order in the small parameter 𝜖𝑝,

nertial terms and damping in Eq. (4) can be neglected [28]. Then Rayleigh equation in the absence of noise reduces to
(1 + 𝛼)
𝑥31

− 𝛼
𝑥1

= 𝑢1(𝜏) = 1 − �̃�𝑚 cos 𝑇 , 𝑇 = 𝜔𝑝𝑡 = 𝜖𝑝𝜏, (11)

where the isothermal law was used for the gas (𝛾 ≈ 1), which is certainly a good approximation for the static situation.
For 𝑢1(𝜏) > 0, Eq. (11) has exactly one solution and it corresponds to a stable equilibrium.

𝑥01(𝑇 ) = − 𝛼
3(1 − �̃�𝑚 cos 𝑇 )

+

{

− 𝛼3

33
(

1 − �̃�𝑚 cos 𝑇
)3

+
(1 + 𝛼)

2
(

1 − �̃�𝑚 cos 𝑇
)

×

[

1 +
√

1 − 4𝛼3

33(1 + 𝛼)
(

1 − �̃�𝑚 cos 𝑇
)2

]}1∕3

+

{

− 𝛼3

33
(

1 − �̃�𝑚 cos 𝑇
)3

+
(1 + 𝛼)

2
(

1 − �̃�𝑚 cos 𝑇
)

[

1 −
√

1 − 4𝛼3

33(1 + 𝛼)
(

1 − �̃�𝑚 cos 𝑇
)2

]}1∕3

. (12)

If 𝑢1(𝜏) < 0 but is small in absolute magnitude, two equilibria exist, the one at larger radius being unstable. The pressure in the
iquid at the bubble wall oscillates at a value given by the static pressure (hydrostatic plus atmospheric pressures) plus the applied
scillatory pressure. When the amplitude of oscillation of the applied pressure exceeds the static pressure, the liquid momentarily
oes into tension, but this is not enough to cause explosive bubble growth because of the restraining effect of surface tension. The
mplitude of oscillation of the applied pressure must be increased further (attaining the Blake threshold pressure) to overcome this
urface tension effect (such that 𝑢𝐵1 < 0 and the two equilibria points merge), causing explosive bubble growth for a short time.
ncreases in the acoustic amplitude beyond the Blake threshold pressure will extend this time during which growth occurs (and the
wo equilibria points that merged on achieving the Blake threshold have now disappeared). Such explosive growth is the first (but
ot the only) criterion for inertial cavitation to occur. Obviously, the most sensitive point in the cycle is 𝜏 = 0 where 𝑢1(0) =

(

1 − �̃�𝑚
)

s negative and of magnitude �̃�𝑚−1. The smaller the bubble, the stronger the surface tension forces that resist growth, and therefore
larger acoustic pressure is needed to cause explosive bubble growth. The Blake threshold condition therefore depends on two

arameters: the acoustic pressure and the initial bubble radius. That is to say, for a given �̃�𝑚 there is a critical 𝑅0 = 𝑅𝑡𝑟
0 above which

the two positive real solutions of (11) become complex. The transient ambient radius 𝑅𝑡𝑟
0 at given �̃�𝑚 is obtained [28] as

𝑅𝑡𝑟
0 = 2𝜎

3𝑃∞

{

⎡

⎢

⎢

⎣

2
(

�̃�𝑚 − 1
)2

− 1 + 2
(

�̃�𝑚 − 1
)

(

1
(

�̃�𝑚 − 1
)2

− 1

)1∕2
⎤

⎥

⎥

⎦

1∕3

+
⎡

⎢

⎢

⎣

2
(

�̃�𝑚 − 1
)2

− 1 + 2
(

�̃�𝑚 − 1
)

(

1
(

�̃�𝑚 − 1
)2

− 1

)1∕2
⎤

⎥

⎥

⎦

−1∕3

− 1

}

. (13)

When 𝑅0 exceeds 𝑅𝑡𝑟
0 , there is a period of time around 𝜏 = 0 where the right hand side of (11) cannot be zero, but must be positive.

Then, the dynamical terms that have been neglected so far must become noticeable and a dynamical expansion follows which can
only be stopped when 𝑢1(𝜏) has again become large enough to allow a stable radius equilibrium. The critical radius corresponds to
the maximum value of the acoustic pressure amplitude at which a bubble can exist in an equilibrium state, the Blake threshold.

Below the Blake’s threshold (𝑅0 ≪ 𝑅𝑡𝑟
0 ), our results are based on an asymptotic analysis for the stochastic Rayleigh equation in

a weak noise approximation [13]

𝑑𝑥𝑖 = 𝑓𝑖(𝐱, 𝜏)𝑑𝜏 + 𝜖𝑁𝜎𝑖𝑘(𝐱, 𝜏)𝑑𝑤𝑘(𝜏), (14)

where 𝜖𝑁 is a small parameter. Perturbation theory leads to an expression for the desired solution in terms of a formal power series
in this parameter

0 1 2 2
4

𝑥1(𝜏) = 𝑥1(𝑇 ) + 𝜖𝑁𝑥1(𝜏, 𝑇 ) + 𝜖𝑁𝑥1(𝜏, 𝑇 ) +⋯
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Fig. 1. Variation of the quasi-static dimensionless bubble radius 𝑥01 over the period of the external force 𝑇 ∶ [0.2𝜋]. The solid, dashed, and dash-dotted lines
correspond to �̃�𝑚 = 0.9, 0.7, 0.5. The calculations have been performed for the following values of the parameters: 𝜎 = 72 mN/m, 𝑃∞ = 105 Pa, 𝑅0 = 100 μm.
For comparison, the dotted line corresponds to �̃�𝑚 = 0.9, 𝑅0 = 10 μm.

𝑥2(𝜏) = 𝜖𝑁𝑥12(𝜏, 𝑇 ) + 𝜖2𝑁𝑥22(𝜏, 𝑇 ) +⋯ . (15)

where 𝑥01(𝑇 ) is determined by quasi-static solution (12).
The investigations of general bubble behavior in a cavitation plume produced by an operating ultrasonic horn [29] and bubble

swarms which aid the cleaning of an interface [30–32] deal with the characteristic bubble sizes of the first hundred of micrometers.
For water of surface tension 𝜎 = 72 mN/m, equilibrium pressure 𝑃∞ = 105 Pa and the bubbles of radius 𝑅0 = 100 μm, the parameter
𝛼 is small 𝛼 ≈ 0.015. Fig. 1 illustrates the form of the quasi-static solution 𝑥01 for a set of the pressure amplitudes: �̃�𝑚 = 0.5, 0.7, 0.9.
For comparison, the dotted line shows the variation of a relatively small bubbles 𝑅0 = 10 μm for the pressure amplitude �̃�𝑚 = 0.9.
These sizes are characteristic for filamentary bubble structures [33–35]. The difference between the variations of 𝑥01 for lower
pressure amplitudes (at greater distances from the threshold) is insignificant, and therefore not shown in the figure. At time moments
𝑇 = 𝜋∕2, 3𝜋∕2, the driving force vanishes (𝑝𝑚 cos 𝑇 = 0), and the bubble is in the initial, equilibrium state 𝑥01 = 1. With the increase
of the field amplitude and approaching the threshold, the instability begins to manifest itself at a stage of the bubble expansion.

The equation of the first order in this chain describes a time-dependent Ornstein–Uhlenbeck process [13]. In the considered case
we have

𝑑𝑥11 = 𝑥12𝑑𝜏,

𝑑𝑥12 =
1

𝑥01(𝑇 )

⎡

⎢

⎢

⎣

−2𝛿𝑥12 −
𝑥11

(

𝑥01(𝑇 )
)4

⎤

⎥

⎥

⎦

𝑑𝜏 +

√

𝐺0𝛺0

3𝑃∞𝑥01(𝑇 )
𝑑𝑤, (16)

where we ignored small corrections (1 + 𝜂) ≈ 1, 𝛾 ≈ 1.
When dealing with the linear stochastic equation, it is convenient to introduce the Green’s function, which is expressed through

solutions of a homogeneous equation. In our case, a homogeneous equation describes an oscillator whose parameters varying slowly
over time (compared to the natural frequency). The corresponding solution obtained by the multiscale method is well known and
leads to the following result:

𝑥11(𝜏) = ∫

𝜏

0
𝑑𝜃 exp

(

−𝛿 ∫

𝜏

𝜃

𝑑𝜏′

𝑥01(𝜖𝑝𝜏
′)

)

sin
⎛

⎜

⎜

⎝

∫

𝜏

𝜃

𝑑𝜏′
[

𝑥01(𝜖𝑝𝜏
′)
]5∕2

⎞

⎟

⎟

⎠

×
[

𝑥01(𝜖𝑝𝜏)𝑥
0
1(𝜖𝑝𝜃)

]5∕4 �̃�𝑁 (𝜃)
0

. (17)
5

𝑥1(𝜖𝑝𝜃)
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Table 1
The spectral composition of the quasistatic solution 𝑥01 for a set of the pressure amplitudes.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7
𝑅0 = 100 μm, �̃�𝑚 = 0.9 0.513 0.216 0.110 0.057 0.035 0.019 0.015
𝑅0 = 100 μm, �̃�𝑚 = 0.7 0.299 0.081 0.030 0.010 0.008 0.0024 0.005
𝑅0 = 100 μm, �̃�𝑚 = 0.5 0.188 0.033 0.011 0.002 0.005 0.0008 0.004
𝑅0 = 10 μm, �̃�𝑚 = 0.9 0.431 0.163 0.077 0.036 0.022 0.011 0.010

Thus the bubble response is the sum of coherent 𝑥01(𝑇 ) and random 𝑥11(𝜏, 𝑇 ) components non-linearly depending on the driving
amplitude �̃�𝑚. The variance of the stochastic component has the following form

𝑉 𝑎𝑟
(

𝑥11
)

≡
⟨

𝑥11(𝜏)𝑥
1
1(𝜏)

⟩

=
𝐺0𝛺0

12𝑃 2
∞

∫

𝜏

0
𝑑𝜃 exp

(

−2𝛿 ∫

𝜏

𝜃

𝑑𝜏′

𝑥01(𝜖𝑝𝜏
′)

)

× sin2
⎛

⎜

⎜

⎝

∫

𝜏

𝜃

𝑑𝜏′
[

𝑥01(𝜖𝑝𝜏
′)
]5∕2

⎞

⎟

⎟

⎠

[

𝑥01(𝜖𝑝𝜏)
]5∕2 [𝑥01(𝜖𝑝𝜃)

]1∕2 ≈
𝐺0𝛺2

0

36𝛿𝑃 2
∞

(

𝑥01(𝑇 )
)4

×
⎡

⎢

⎢

⎣

1 −

[

𝛿∕𝑥01(𝑇 )
]2

[

𝛺0∕(𝑥01(𝑇 ))
5∕2

]2 +
[

𝛿∕𝑥01(𝑇 )
]2

⎤

⎥

⎥

⎦

≈
𝐺0𝛺0

36𝑃 2
∞

(

𝛺0
𝛿

)

(

𝑥01(𝑇 )
)4 . (18)

The resonance and proximity to the Blake threshold are the two key factors that lead to the substantial value of the stochastic
component in bubble oscillations. The appearance of the quality factor 𝑄 ∝ 𝛺0∕𝛿 in Eq. (18) is the result of resonance. A significant
growth of the factor

(

𝑥01(𝑇 )
)4 at the moments 𝑇 = 2𝜋𝑛 (𝑛 = 0, 1, 2,…) is due to the proximity to the Blake threshold.

5. Spectral density

The power spectral density of the bubble oscillations is determined by the expression

𝑆(𝜔) = 1
2𝜋 ∫

+∞

−∞
𝑑𝑠𝑒−i𝜔𝑠 lim

𝑇𝐿→∞
1
𝑇𝐿 ∫

𝑇𝐿

0
𝑑𝑡
[

𝑥01(𝜔𝑝𝑡) + 𝑥11(𝑡)
]

×
[

𝑥01(𝜔𝑝(𝑡 + 𝑠)) + 𝑥11(𝑡 + 𝑠)
]

. (19)

This spectrum is formed by the correlations of two different types: the auto-correlation function of the quasi-static oscillations and
the auto-correlation function of the stochastic component. Thus we naturally separate the coherent and incoherent contributions to
the spectral density. Note that we assume ergodicity of the system in calculating the spectral function of the noise component.

The coherent part of the spectral function is obtained as

𝑆𝑐 (𝜔) =
∞
∑

𝑛=1

𝑎2𝑛
4

[

𝛿(𝜔 − 𝑛𝜔𝑝) + 𝛿(𝜔 + 𝑛𝜔𝑝)
]

,

𝑎𝑛 =
2
𝜋 ∫

𝜋

0
𝑑𝑇𝑥0(𝑇 ) cos(𝑛𝑇 ) =

2
𝜋 ∫

𝜋

0
𝑑𝑇

(1 + 𝛼)−1∕3 cos(𝑛𝑇 )
(

1 − �̃�𝑚 cos 𝑇 + 𝛼
𝑥0(𝑇 )

)1∕3
, (20)

here we have dropped the term with 𝑛 = 0 which is insignificant for the study of dynamic effects.
Table 1 illustrates the spectral composition of the quasistatic solution 𝑥01 for a set of the pressure amplitudes: �̃�𝑚 = 0.9, 0.7, 0.5

series 1, 2, 3). Calculations have been performed for the following values of the parameters: 𝜎 = 72 mN/m, 𝑃∞ = 105 Pa, 𝑅0 = 100
m. Series (4) shows the difference in spectral composition with decreasing bubble size. In this case, the calculations are performed
or 𝑅0 = 10 μm, �̃�𝑚 = 0.9.

The autocorrelation function of the stochastic component has the following form

𝑆𝑠𝑡(𝜔, 𝑇 ) =
1
𝜋 ∫

∞

0
𝑑𝑠 cos(𝜔𝑠)

⟨

𝑥11(𝑡)𝑥
1
1(𝑡 + 𝑠)

⟩

=
𝐺0𝛺0

36𝑃 2
∞

1
𝜋 ∫

∞

0
𝑑𝑠 cos(𝜔𝑠)

[

𝑥01(𝜔𝑝(𝑡 + 𝑠))

𝑥01(𝜔𝑝𝑡)

]5∕4

exp

(

−𝛿 ∫

𝑡+𝑠

𝑡

𝑑𝑡′

𝑥01(𝜔𝑝𝑡′)

)

×

{

𝛺0
𝛿

[

𝑥01(𝜔𝑝𝑡)
]4 cos

⎛

⎜

⎜

⎝

𝛺0 ∫

𝑡+𝑠

𝑡

𝑑𝑡′
[

𝑥01(𝜔𝑝𝑡′)
]5∕2

⎞

⎟

⎟

⎠

+
[

𝑥01(𝜔𝑝𝑡)
]11∕2

× sin
⎛

⎜

⎜

𝛺0 ∫

𝑡+𝑠

𝑡

𝑑𝑡′
[ 0 ]5∕2

⎞

⎟

⎟

}

≈
𝐺0

36𝑃 2

[

𝑥01(𝑇 )
]3
6

⎝

𝑥1(𝜔𝑝𝑡) ⎠

∞
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Fig. 2. Normalized spectral density of stochastic component of bubble oscillations, 𝑆𝑁 , as a function of the dimensionless frequency 𝜔∕𝛺0 and slow time 𝑇 = 𝜔𝑝𝑡.
Panels (𝑎), (𝑏), (𝑐) show the results of calculations for 𝑅0 = 100 μm, �̃�𝑚 = 0.5, 0.7, 0.9. The last panel (𝑑) corresponds to 𝑅0 = 10 μm, �̃�𝑚 = 0.9.

× 1
𝜋

𝜔2∕𝛺2
0 +

[

𝑥01(𝑇 )
]−5

[

𝜔2∕𝛺2
0 −

[

𝑥01(𝑇 )
]−5

]2
+ 2 𝛿2

𝛺2
0

[

𝑥01(𝑇 )
]−2

[

𝜔2∕𝛺2
0 +

[

𝑥01(𝑇 )
]−5

]

. (21)

The integrand in Eq. (21) contains a factor with a rapidly oscillating phase (with a frequency 𝛺0). When calculating the integral
over 𝑠, we took advantage of the fact that the oscillating phase does not have stationary points. For this reason, the asymptotic
expansion is carried out by integration by parts and the main contribution comes from the neighborhood of 𝑠 = 0.

The behavior of the incoherent correlation function is determined by the resonance of an oscillator, parameters of which (natural
frequency, damping and coupling) are slowly varying in time with the period of the driving field.

The surfaces in Fig. 2 show graphs of the normalized spectral density 𝑆𝑁 = 𝑆𝑠𝑡(𝜔, 𝑇 ) ×
(

36𝑃 2
∞∕𝐺0

)

versus dimensionless frequency
𝜔∕𝛺0 and slow time 𝑇 = 𝜔𝑝𝑡. The first three panels (𝑎), (𝑏), (𝑐) correspond to a bubble with radius of 100 μm driven by a sound
field with a dimensionless pressure amplitude �̃�𝑚 = 0.5, 0.7, 0.9. The panel (𝑑) describes the spectral density of the bubble with a
smaller radius of 10 μm driven by a sound field �̃�𝑚 = 0.9.

In carrying out the calculations, we used the following model for the damping coefficient entering into Eq. (21). The contribution
of the thermal damping 𝛿𝑡ℎ is dominant in the total damping factor 𝛿 for these conditions and presumed high frequency noise driving.
Moreover, since the thermal penetration length 𝑙 =

√

𝐷∕𝜔 (𝐷 = 2 ⋅ 10−5 m2 s−1 is the thermal diffusivity of air) is much smaller
than the radius of the bubble, the following simple formula can be used for the damping coefficient [36]:

𝛿𝑡ℎ =
𝑃0

2
9𝛾(𝛾 − 1)

√

𝐷 . (22)
7

2𝜌𝜔𝑅 𝑅 2𝜔
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The quasi-static bubble radius 𝑅 = 𝑅0𝑥01(𝑇 ) should be used in this formula. Since during evaluation of the spectral density (21) the
mall damping should be considered only near 𝜔∕𝛺0 ≈

[

𝑥01(𝑡)
]−5∕2, we replaced 𝜔 by this value in Eq. (22). Thus, when plotted,

we used the following expression for the damping coefficient 𝛿𝑡ℎ = 𝛿𝑡ℎ(𝑅0)
[

𝑥01(𝑇 )
]3∕4, where 𝛿𝑡ℎ(𝑅0) is the thermal damping of the

bubble with radius 𝑅0 at resonance.
The proximity to the threshold of instability and a resonance are mechanisms by which a system embedded in a noisy

environment acquires an enhanced sensitivity towards small external forcing. As such it highlights the possibility that noise, a
phenomenon considered traditionally to constitute a nuisance, may actually play a constructive role.

6. Discussion

A step has been taken in describing cavitation activity and the structure of the sound field. The dynamics of a single inclusion
have been described, but there are many bubbles in the cavitation zone that effectively interact with each other due to monopole
oscillations associated with changes in their volume. The monopole interaction is long-range in nature, so the bubble is affected by
some self-consistent field, which varies on scales exceeding the average distance between bubbles. Approximation of this effective
field by a simple model made it possible to describe the dynamics of a single bubble.

The acoustic cavitation spectrum offers a convenient and concise method for presenting cavitation data during an acoustic
exposure. However, to describe the observed physical characteristics, it is necessary to find out the details of the formation of
a self-consistent field generated by the emission of individual inclusions. Attempts have been made to describe a contribution to the
cavitation noise spectrum from periodic shock waves [37], which arise when individual bubbles collapse.

A comparison of the spectral density characterizing the emission of a single bubble with the experimentally recorded acoustic
cavitation spectrum is presented in Supplementary materials. Realizing the limitations of the comparison, it was not included in the
main text of the article.

The used model of spherically symmetric nonlinear bubble oscillations, described by the Rayleigh equation, has a number of
limitations [28,38]. The most obvious of them are associated with the appearance of deformation distortion and patterns formation
on the bubble wall [39–41]. Identification of the features of parametric instability of the shape oscillations in the presence of external
noise can be achieved using an approach similar to that used in this work.

7. Conclusion

Lie group analysis provides a systematic account of symmetries inherent to the problem of the nonlinear dynamics of a bubble
in the field of a harmonic signal in the presence of a random component. The approximate time translation symmetry is restored
when the driving period is long compared to the time scale of the bubble’s eigenoscillations, which provides an analytical solution
of the problem near the Blake threshold.
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