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A B S T R A C T

The split-step Padé approach is an extremely efficient tool for the integration of pseudod-
ifferential parabolic equations, which are widely used for the modeling of acoustic wave
propagation. In this study, a generalization of this method to the case of parabolic equations
with unknown vector functions is presented. Such generalization requires an algorithm for
efficient numerical evaluation of a function of a matrix with differential operators as its
elements. After a finite-difference discretization this algorithm reduces to the solution of several
Sylvester-like problems. The generalized split-step Padé method presented here is an attractive
tool for solving 3D problems of sound propagation in the ocean within the framework of coupled
mode parabolic equations theory.

. Introduction

Wide-angle parabolic equations are currently widely used for numerical modeling of wave propagation in underwater acous-
ics [1,2] (as well as in some other fields of physics, e.g., [3,4]). Arguably, the most advanced tool for their solution is the so-called
plit-step Padé method, proposed independently by Collins [1] and Avilov [5]. The method consists in a formal factorization of the
perator in the scalar Helmholtz equation of the form

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑘2𝑢 =
(

𝜕𝑥 + i
√

𝑘2 + 𝜕2𝑦
)(

𝜕𝑥 − i
√

𝑘2 + 𝜕2𝑦
)

𝑢 = 0 , (1)

here 𝑢 = 𝑢(𝑥, 𝑦) is an unknown function (e.g., acoustic pressure), 𝑘2 = 𝑘2(𝑥, 𝑦) is the wavenumber or the refractive index (subscripts
, 𝑦 denote partial derivatives with respect to these variables throughout this study). A one-way counterpart of (1), corresponding
o sound propagation in the positive direction of the 𝑥-axis is called a pseudodifferential parabolic equation (PDPE) [5,6]

(

𝜕𝑥 − i
√

𝑘2 + 𝜕2𝑦
)

𝑢 = 0 , (2)

ince it contains a pseudodifferential operator i
√

𝑘2 + 𝜕2𝑦 .
The split-step Padé (SSP) method [1,6] of solving Eq. (2) consists in the formal integration of this equation over the interval

𝑥, 𝑥 + ℎ], which leads to the equality

𝑢(𝑥 + ℎ, 𝑦) = exp
(

iℎ
√

𝑘2 + 𝜕2𝑦
)

𝑢(𝑥, 𝑦) ≡ ̂𝑢(𝑥, 𝑦) , (3)
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and in a replacement of the operator ̂ on the right-hand side of this equality (usually called the propagator) by its [𝑝∕𝑝] Padé
approximant of the form

exp
(

iℎ
√

𝑘2 + 𝜕2𝑦
)

𝑢 ≈ ei𝑘0ℎ
(

𝑑0 +
𝑝
∑

𝑘=1

𝑑𝑘
1 + 𝑏𝑘𝑋̂

)

𝑢 = ei𝑘0ℎ
(

𝑑0𝑢 +
𝑝
∑

𝑘=1
𝑑𝑘𝑤𝑘

)

, (4)

where 𝑘0 is a reference value of 𝑘(𝑥, 𝑦), and 𝑋̂ = (𝑘2−𝑘20+𝜕2𝑦 )∕𝑘
2
0. The quantities 𝑤𝑘 = 𝑤𝑘(𝑥, 𝑦) are obtained by solving the following

operator equations
(

1 + 𝑏𝑘𝑋̂
)

𝑤𝑘 = 𝑢,

which are transformed into e.g. linear systems with tridiagonal matrices by the standard second-order finite difference discretization
of the operator 𝑋̂ [1].

Thus, for a [𝑝∕𝑝] Padé approximation of the square root exponential operator, the marching numerical scheme requires 𝑝
inversions of some sparse (e.g., tridiagonal) matrices for each step along the 𝑥-axis.

In the present study, this method is generalized to the case of a coupled system of equations of the form (1). Such systems
arise naturally when considering the propagation of coupled normal modes in a 3D geoacoustic waveguide [2,7]. Although the
corresponding one-way equations have been considered in the literature (see, e.g., [2]), the algorithm proposed below is novel. It
could serve as a basis for new full-wave 3D models of sound propagation in the ocean, offering much higher computational efficiency
than the 3D parabolic equations that are currently widely used in underwater acoustics [8]).

2. The coupled system of elliptic equations and its one-way counterpart

The main goal of this study is to generalize the SSP algorithm outlined in the previous section to the case of a coupled system
of 𝐽 elliptic equations [2,9]

𝑢𝑚,𝑥𝑥 + 𝑢𝑚,𝑦𝑦 + 𝑘2𝑚𝑢𝑚 +
𝐽
∑

𝑗=1
𝑉𝑗𝑚𝑢𝑗 +

𝐽
∑

𝑗=1
𝑊𝑗𝑚𝑢𝑗,𝑦 = 0 , (5)

where 𝐕(𝑦) = (𝑉𝑗𝑚(𝑦)) and 𝐖(𝑦) = (𝑊𝑗𝑚(𝑦)) are 𝑦-dependent 𝐽 × 𝐽 matrices (typically full). In fact, the Eqs. (5) can also contain the
terms with 𝑢𝑗,𝑥, but without any loss of generality they can be eliminated by a change of variables.

In particular, such equations naturally emerge from the decomposition

𝑈 (𝑥, 𝑦, 𝑧) =
𝑀
∑

𝑚=1
𝑢𝑚(𝑥, 𝑦)𝜙𝑚(𝑧, 𝑥, 𝑦) , (6)

of the acoustic field 𝑈 (𝑥, 𝑦, 𝑧) in a shallow sea over vertical normal modes 𝜙𝑚(𝑧) (which also depend parametrically on 𝑥, 𝑦) as
described in [2,9]. The functions 𝑢𝑚 are called mode amplitudes.

Let us first introduce a vector-matrix form of the coupled Eqs. (5), which is essential for further discussion. First, we define a
vector function 𝐮(𝑥, 𝑦) = (𝑢1, 𝑢2,… , 𝑢𝐽 ) consisting of the unknown functions (we emphasize that it is a row vector). The system of
scalar Eqs. (5) can now be rewritten in vectorized form as

𝐮𝑥𝑥 + 𝐮𝑦𝑦 + 𝐮𝐊2 + 𝐮𝑦𝐖 + 𝐮𝐕 = 0 , (7)

where 𝐖(𝑥, 𝑦), 𝐕(𝑥, 𝑦) are the coupling matrices, and 𝐊 = diag(𝑘1, 𝑘2,… , 𝑘𝑀 ) is a diagonal matrix with the quantities 𝑘𝑚(𝑥, 𝑦) along
the main diagonal, i.e., such that 𝐊𝑚𝑛 = 𝛿𝑚𝑛𝑘𝑚).

Introducing the operator 𝑅̂𝑀 of right multiplication by any matrix 𝐌, we rewrite Eq. (7) as

𝐮𝑥𝑥 = −𝜕2𝑦𝐮 − 𝑅̂𝑊 𝜕𝑦𝐮 − 𝑅̂𝑉 𝐮 . (8)

Next, we can perform the formal factorization of (8) and obtain the following one-way equation along the 𝑥 direction

𝐮𝑥 = i
√

𝜕2𝑦 + 𝑅̂𝑊 𝜕𝑦 + 𝑅̂𝑉 𝐮, 𝑥 > 0 . (9)

This equation contains the square root of a matrix with differential operators as elements. In principle, it is a pseudodifferential
parabolic equation for an unknown vector function. In the following it will be called vectorized PDPE (VPDPE).

We can formally integrate (9) over the interval [𝑥, 𝑥 + ℎ] to get

𝐮(𝑥 + ℎ, 𝑦) = exp
(

i𝑘0ℎ
√

1 + 𝑋̂
)

𝐮(𝑥, 𝑦),

where 𝑘0 is a reference value of 𝑘𝑗 (it can be the same for all 𝑗), and the operator 𝑋̂ is defined by the formula

2 2 ̂
2

𝜕𝑦 + 𝑅𝑄𝜕𝑦 + 𝑅𝑆 = 𝑘0(1 +𝑋).
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3. Generalized split-step Padé approach for solving a VPDPE

As in the adiabatic (uncoupled) case, the propagator allows an approximation by an exponential of the form

𝐮(𝑥 + ℎ, 𝑦) = ei𝑘0ℎ
(

𝑑0 +
𝑝
∑

𝑘=1

𝑑𝑘
1 + 𝑐𝑘𝑋̂

)

𝐮(𝑥, 𝑦) = ei𝑘0ℎ
(

𝑑0𝐮(𝑥, 𝑦) +
𝑝
∑

𝑘=1
𝑑𝑘𝐟𝑘

)

. (10)

The terms 𝐟𝑘(𝑥, 𝑦) in this case are obtained by solving the following operator equations

(1 + 𝑐𝑘𝑋̂) 𝐟𝑘(𝑥, 𝑦) = 𝐮(𝑥, 𝑦) . (11)

In the following, we consider the solution of an Eq. (11) for one step of the marching scheme separately, i.e., we fix the value of 𝑥
and omit the subscript 𝑘 for the moment

(1 + 𝑐𝑋̂) 𝐟 = 𝐮.

To perform a finite-difference discretization of Eq. (11) in 𝑦, we replace the vector function 𝐮(𝑦) by a matrix 𝐔 = (𝑈𝓁𝑗 ) with 𝑁
rows (number of grid points in 𝑦) and 𝐽 columns (number of modes). Then the matrices 𝐟𝑘(𝑦) ∼ 𝐅𝑘(𝑦) can be found by solving the
following matrix equation (where we drop the subscript as explained above)

𝑘20
( 1
𝑐
− 1

)

𝐅 + 𝐃2𝐅 + ̂(𝐅) + 𝐅𝐒 = 𝐁𝑛 , (12)

where the linear operator ̂ acting on 𝑁 × 𝐽 matrices is defined as

(̂(𝐅))𝑘𝓁 =
𝑁
∑

𝑛=1

𝐽
∑

𝑗=1
(𝐃1)𝑘𝑛 𝐅𝑛𝑗 𝐐𝑗𝓁𝑛 , (13)

𝐃2 and 𝐃1 are square 𝑁 ×𝑁 matrices corresponding to finite-difference approximations of the second and the first derivatives with
respect to the transverse variable 𝑦, respectively, and, by definition, 𝐅𝑛𝑗 = (𝐟 )𝑗 (𝑦𝑛).

Note that the 𝑝 matrix Eqs. (12) to be solved at each step of the marching scheme are similar to the so-called generalized Sylvester
problem. The only difference is that after the finite difference discretization in 𝑦, the functions 𝐐(𝑦) and 𝐒(𝑦) become tensors 𝐽×𝐽×𝑁 .
Despite this difference, the Eqs. (11) can be solved by exactly the same vectorization procedure and construction similar to the tensor
product of matrices. Let us replace the matrix 𝐅 by a column vector vec(𝐅) which is obtained by stacking columns of the matrix 𝐅
(this is called ‘vectorizing’ a matrix). Then the operator ̂ can be replaced by multiplication by a block matrix vec(̂) of size 𝑁𝐽×𝑁𝐽
defined as

vec(̂(𝐅)) = vec(̂) vec(𝐅) =
⎡

⎢

⎢

⎣

𝑄̄11𝐷1 … 𝑄̄1𝐽𝐷1
⋮ ⋱ ⋮

𝑄̄𝐽1𝐷1 … 𝑄̄𝐽𝐽𝐷1

⎤

⎥

⎥

⎦

vec(𝐅) , (14)

here

𝑄̄𝑗𝓁 = diag(𝑄𝑗𝓁1,… , 𝑄𝑗𝓁𝑁 ) =
⎡

⎢

⎢

⎣

𝑄𝑗𝓁1
⋱

𝑄𝑗𝓁𝑁

⎤

⎥

⎥

⎦

s a diagonal matrix 𝑁 ×𝑁 consisting of the values of the function 𝑄𝑗𝓁(𝑦) at the grid points in 𝑦.
Note that the computations reported below were performed using MATLAB routines for constructing the Kronecker product of

atrices and for matrix inversion. The code was surprisingly efficient despite the fact that we had 𝐽 = 30 and 𝑁 = 4000, which
s already suitable for handling practical products. In the benchmark case described below, the computation time in MATLAB was
bout one hour (for the range 0 < 𝑥 < 25 km, −3.5 km < 𝑦 < 3.5 km), which is much faster than the state-of-the-art implementation
f the 3D PE [8] in C++.

. An example: propagation in the wedge

In this section, we consider the solution of an equation of the form (7) that naturally arises in shallow water acoustics. Consider
typical area of shallow water near the coast, shown in Fig. 1(a) with a time-harmonic point source of the frequency 𝑓 = 25 Hz

laced at the point S. We do not give an exact description of the test case parameters, as they are provided in numerous papers
sing this benchmark (see, e.g., [6–8,10]).

In this case, mode amplitudes 𝑢𝑚(𝑥, 𝑦) satisfy the Eqs. (5), where 𝑘𝑚 = 𝑘𝑚(𝑦) is the horizontal wavenumber of the 𝑚th mode
the media in this case parameters do not depend on 𝑥), and 𝑉𝑗𝑚, 𝑊𝑗𝑚 are coupling coefficients, which can be easily found after
omputing 𝜙𝑗 (the computation of 𝜙𝑗 is done by solving a Sturm–Liouville problem, and numerous methods are available to do this
n a very efficient way, see [9]).

Although sufficiently far from the source the field can be calculated by the adiabatic counterpart of (5) (i.e. the uncoupled
ystem where all 𝑉𝑗𝑚, 𝑊𝑗𝑚 are set to zero and we have an equation of the type (2) for each mode amplitude), at close range, where
pslope/downslope propagation plays an important role, this simplification does not work. Similarly, simpler parabolic equations
3

ith mode coupling (see, e.g., [7]) cannot be used in this case due to the limitations of their aperture in the horizontal plane.
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Fig. 1. (a) The coastal wedge: an acoustic waveguide where mode amplitudes are governed by the system (5). (b) Acoustic field in the wedge along the line
𝑧 = 30 m, 𝑥 = 1000 m as a function of 𝑦, computed by solving the VPDPE (9) using the generalized SSP algorithm (red line) and by its adiabatic counterpart
(2) for each mode (blue line). The reference solution is represented by the black dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

In order to achieve high accuracy of the solution in this case, we set 𝑝 = 11 and 𝐽 = 30. Our goal is to compute the acoustic field
along the line 𝑧 = 30m, 𝑥 = 1000m and to compare the results with the benchmark solution obtained by the source image method.
Note that we used starters (the Cauchy data modeling the point source) proposed in [6] and truncated the computational domain
by using the same PML as in [6].

The plot of the acoustic field 𝑃 (𝑥, 𝑦, 𝑧) (in dB re 𝑃 (1m)) obtained by solving VPDPE (9) using the SSP method is shown in
Fig. 1(b). It can be clearly seen that our solution (red solid line) exhibits a very good agreement with the reference (black dashed
line). It can be observed that the adiabatic solution obtained using the Eqs. (2) for each mode amplitude is very inaccurate in the
considered region (although it can be used in the far field as shown in [6]).

5. Conclusion

In this study, a generalization of the SSP algorithm to the case of a one-way wave equation for an unknown vector function
is presented. This algorithm can be used to model coupled mode propagation in 3D waveguides in underwater acoustics. It can
be considered as a direct generalization of the method [6] to the non-adiabatic propagation scenarios. On the one hand, the
coupled mode parabolic wave Eq. (9) is a generalization of its scalar counterpart, while on the other hand it can be considered
as a generalization of the vectorized WKBJ method to the case of 3D problems. The proposed method allows full-wave 3D modeling
of sound propagation with much lower computational cost than 3D parabolic equations (which are currently widely used for this
purpose).
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