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A B S T R A C T

Soliton gas or soliton turbulence is a subject of intense studies due to its great importance to optics,
hydrodynamics, electricity, chemistry, biology and plasma physics. Usually, this term is used for integrable
models where solitons interact elastically. However, soliton turbulence can also be a part of non-integrable
dynamics, where long-lasting solutions in the form of almost solitons may exist. In the present paper, the
complex dynamics of ensembles of solitary waves is studied within the Schamel equation using direct numerical
simulations. Some important statistical characteristics (distribution functions, moments, etc.) are calculated
numerically for unipolar and bipolar soliton gases. Comparison of results with integrable Korteweg–de Vries
(KdV) and modified KdV (mKdV) models are given qualitatively. Our results agree well with the predictions
of the KdV equation in the case of unipolar solitons. However, in the bipolar case, we observed a notable
departure from the mKdV model, particularly in the behavior of kurtosis. The observed increase in kurtosis
signifies the amplification of distribution function tails, which, in turn, corresponds to the presence of
high-amplitude waves.
1. Introduction

Solitons are the exact solutions of many equations and have many
applications in nonlinear dynamics, including optical fibers, surface and
internal waves in the ocean, laboratory and astrophysical plasma, etc.
According to the classic definition, they are coherent large amplitude
pulses whose shape and speed do not change as they propagate. Such
particle-like behavior is explained by the balance between dispersion
and nonlinearity, which, on one hand, tends to cause wave spreading,
and, on the other hand, leads to its steepening. The great importance
of solitons lies in their ability to transfer energy over long distances.
Among the physical systems in which solitons play an important role
is the formation of abnormally large waves (i.e., rogue waves or freak
waves). This problem gives rise to the soliton gas theory, which initially
emerged within integrable models such as the nonlinear Schrödinger
and KdV equations. Usually, the terms ‘‘soliton gas’’ or ‘‘soliton tur-
bulence’’ mean an ensemble of solitons with random parameters in the
integrable systems [1,2]. The property of solitons to interact elastically
with each other gives rise to an obvious association with a gas of elasti-
cally colliding particles. V. Zakharov [1,2] first introduced the concept
of soliton turbulence where the kinetic theory of rarefied solitons was
build. Later on, this concept has been extended to the dense soliton gas
with frequently interacted solitons [3,4]. Kinetic equations describes
the transport of spectral data of the associated scattering problem, but
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there is no information about phases (polarity) of solitons and wave
fields themselves. However, the so-called density of states (DOS) of
soliton gases described by the kinetic theory can be used to compute
averaged fluxes, conserved quantities, and statistical momenta of the
asymptotic stage of the evolution in integrable system [4–6]. Direct
numerical simulations of wave ensemble is an alternative approach to
study of soliton gas statistics. These results for integrable KdV-models
can be found in [7–13]. Similar studies concerning wave packets that
preserve their energy are called breathers. Their collective dynamics
promotes freak wave formation [14,15]. Soliton and breather turbu-
lence are extensively investigated within the nonlinear Schrödinger
equation in the contexts of water waves and nonlinear optics [16–22].
Moreover, the presence of soliton and breather turbulence in ocean
waves was confirmed in [23,24].

The problem of soliton turbulence may also be investigated in
non-integrable models, allowing the existence of soliton-like impulses,
which interact almost elastically. However, the analytical methods
used to study the integrable turbulence are not applicable here, and
only numerical simulation can be applied. Dutykh and Pelinovsky [25]
compared the collective behavior of soliton ensembles within the KdV
equation the non-integrable KdV–BBM type models using direct nu-
merical simulations. The closeness in the behavior of the wave fields
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was ascertained, including the fact that the probability distributions
remain quasi-invariant during the system evolution for both KdV and
KdV–BBM cases. In the present article, we study the soliton turbulence
within the Schamel equation, which is not integrable by the inverse
scattering transform since a Lax pair does not exist for this equation.
It describes the development of a localized, coherent wave structure
that propagates in plasma [26–29]. This equation contains a modular
nonlinear term with non-integer power, and this stands out strongly
on background of traditional equations Korteweg–de Vries hierarchy.
The features of two soliton collisions in the framework of the Schamel
equation were recently investigated in [30,31]. It was shown that the
soliton interaction with the same polarity follows the classical scenario
of the modified Korteweg–de Vries soliton with small difference due
to non-integrability of the Shamel equation. However, in the case
of bipolar soliton interactions the energy accumulation in the largest
soliton may contribute to the rogue wave formation in the case of
long-term wave dynamics. Also as we show such interaction leads to
the new features of statistical properties due to transformation of the
soliton energy to the dispersive tails. In the present work we study
the dynamics of the soliton gas within the Schamel equation and
its statistical properties. In the Section 2 the Schamel equation and
the numerical methods. In the Section 3 the collective dynamics of
ensembles of solitons with the same polarity is considered. Further,
in Section 4 we discover the features or bipolar soliton collision and
statistical properties of bipolar soliton gas, with special emphasis on
freak wave formation in such wave fields. Conclusion is given at the
end of the paper.

2. The schamel equation

In our research, we investigate solitary wave interactions by focus-
ing on the Schamel equation in its canonical form

𝑢𝑡 +
√

|𝑢|𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (2.1)

Within this equation, the variable 𝑢 represents the wave field at a
specific position 𝑥 and time 𝑡. It is worth noting that the Schamel
equation is a Hamiltonian equation, meaning it possesses a Hamiltonian
function that governs its behavior. The Hamiltonian associated with
this equation is defined as follows

 = ∫

+∞

−∞

[

−1
2
𝑢2𝑥 +

4
15

sign(𝑢)|𝑢|5∕2
]

𝑑𝑥. (2.2)

By expressing Eq. (2.1) in Hamiltonian form with respect to the func-
tional , we can establish a relationship between the wave dynamics
and the Hamiltonian. This connection is expressed by the following
equation

𝑢𝑡 =
𝜕
𝜕𝑥

[

𝛿
𝛿𝑢

]

,

where the functional derivative of the Hamiltonian with respect to 𝑢 is
given by
𝛿
𝛿𝑢

= 𝑢𝑥𝑥 +
2
3
sign(𝑢)|𝑢|3∕2.

One intriguing feature of the Schamel equation is the invariance of
its Hamiltonian  due to the absence of explicit time dependence. This
invariance implies that the Hamiltonian remains constant throughout
the evolution of the wave system. Furthermore, the Schamel equa-
tion (2.1) possesses an additional invariant, known as the Casimir in-
variant or the mass invariant. This quantity is defined by the following
integral

𝑀(𝑡) = ∫

+∞

−∞
𝑢(𝑥, 𝑡)𝑑𝑥, (2.3)

and it characterizes the mass or the total ‘‘amount’’ of the wave field at
any given time 𝑡. In addition to the mass invariant, the equation also
exhibits a momentum invariant, given by

𝑃 (𝑡) =
+∞

𝑢2(𝑥, 𝑡)𝑑𝑥. (2.4)
2

∫−∞
Fig. 1. Soliton profile of the Schamel equation (2.5) and the KdV equation (2.7).

Fig. 2. Initial distribution of solitons.

Fig. 3. 𝑥 − 𝑡 diagram of soliton field.

These invariants, namely the Hamiltonian (2.2), the mass (2.3), and
the momentum (2.4), play a crucial role in evaluating the accuracy
and reliability of numerical methods employed to solve the Schamel
equation (2.1).

The Schamel equation (2.1) supports solitary wave as solutions.
These solitary waves can be described by the following expressions

𝑢(𝑥, 𝑡) = 𝑎 sech4 (𝑘(𝑥 − 𝑐𝑡)) , where 𝑐 =
8
√

|𝑎|
15

and 𝑘 =
√

𝑐
16

. (2.5)

Here, 𝑎 stands for the amplitude of the solitary wave, which can be
positive or negative. The parameter 𝑐 denotes the speed of the solitary
wave and 𝑘 characterizes its wavenumber.

The KdV equation

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (2.6)

also admits solitary wave as solutions described by the formulas

𝑢(𝑥, 𝑡) = 𝑎 sech2 (𝑘(𝑥 − 𝑐𝑡)) , where 𝑐 = 𝑎 and 𝑘 =
√

𝑎 . (2.7)
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Fig. 4. Zoom on portion of the computational domain at 𝑡 = 0 (left) and at 𝑡 = 1000 (right).
Fig. 5. Temporal variability of the maxima of the wave field.
Soliton solutions of the Schamel equation are wider than the KdV
olitons (see Fig. 1), and they propagate faster than KdV ones. Details
f soliton interactions for the Schamel equation, such as phase-shift and
nergy transfer, were recently investigated in the works of Flamarion
t al. [30] and Didenkulova et al. [31].

The Schamel equation (2.1) is solved numerically through a Fourier
seudospectral method combined with an integrating factor. The com-
utational domain chosen for the simulation is a periodic interval
−𝐿,𝐿], discretized with an equidistant grid consisting of 𝑁 points. This

grid configuration facilitates precise approximation of spatial deriva-
tives, as discussed in [32]. To mitigate the influence of spatial period-
icity, a sufficiently large computational domain is employed. For the
temporal evolution of the equation, the classical fourth-order Runge–
Kutta method is employed with discrete time steps of size 𝛥𝑡. Typical
simulations employ parameter values such as 𝐿 = 200, 𝑁 = 213, and
𝛥𝑡 = 0.005. Numerical simulations are controlled by retaining of the first
and second moments with precision of 10−9 and 10−8, respectively.

3. Unipolar soliton

With aim to study the dynamics of unipolar soliton ensemble, we
set initial wave field as a sequence of 100 separated solitons with
random amplitudes uniformly distributed from the range [1, 3] in ran-
dom order and fixed distance between their positions is 20 units (see
Fig. 2). The solitons propagate to the right and owing to different
3

speeds interact with each other. Non-dimensional time of calculation is
set equal to 1000, so that solitons have time to interact. Multiple soliton
interactions during the computational time is clearly seen in spatio-
temporal diagram (Fig. 3). Due to the repulsion of unipolar solitons,
pair soliton interactions predominate here, which were studied in detail
in [30]. In the process of wave collision, solitons are phase-shifted, thus
after several interactions their locations are hardly predicted.

It is well known that interaction of unipolar KdV-like solitons leads
to decrease in amplitude of resulting impulse [30,33–37]. In the non-
integrable Schamel equation this property is the same in case of two-
soliton collision. However, there is a radiation created by inelastic
collisions of solitons which is displayed in details in Fig. 4. A more
detailed study on the solitary wave collision for the Schamel equa-
tion can be seen in [30]. In this work, the authors investigated how
radiation is generated during the solitary wave collisions and the Lax-
categorization for solitary wave collisions. While the dispersive tail
amplitudes are approximately only 1% of the averaged amplitude of
the initial soliton distribution, they still exert a minor influence, leading
to a slight increase in the maximum wave field following interactions
with other solitons (see Fig. 5). Here, the amplitude of the biggest initial
soliton is 3, and in the Figure maximum of the wave field reaches 3.07.
This distinguishes the unipolar gas of the Schamel equation from the
unipolar gas of the integrable KdV equation.

The fluctuations of the wave fields, which form after soliton colli-
sions, are small enough in order to influence higher statistical moments:
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Fig. 6. Temporal evolution of the skewness and kurtosis of the unipolar soliton.

Fig. 7. Distribution function of wave amplitudes at different times averaged over 20
realizations.

skewness and kurtosis. Fig. 6 demonstrates the temporal evolution of
skewness and kurtosis of the unipolar soliton field for one realization
and averaged value over 20 realizations. Similar to KdV model there is
a short transition zone of sharp decrease of moments till about 𝑡 = 50
and it is the same for all realizations of soliton gas. Averaging over
realization predictably diminishes the fluctuations of moments and it
tends to stationary state.

The interactions among solitons have a discernible impact on the
distribution functions of the wave field, as depicted in Fig. 7. Specif-
ically, the average distribution function of wave amplitudes (corre-
sponding to local maxima of the wave field) undergoes a downward
shift in the high-amplitude region. Consequently, the presence of large
waves diminishes, leading to a more uniform wave field. These findings
align with similar observations made in studies involving soliton gases
governed by the KdV and mKdV equations [7,25]. The evolution of
the number crests count for a single realization at different times is
illustrated in Fig. 8.

4. Bipolar soliton

Presence of solitons with different polarity makes the dynamics
of the wave system more extreme, because the interaction bipolar
4

W

solitons increases the maximum of the wave field unlike interaction
of unipolar solitons. Formation of abnormally large waves as a result
of bipolar soliton collision in the mKdV equation was demonstrated
in [7,10,13]. However, because of the presence of radiation the maxi-
mum of resulting impulse is less than superposition of amplitudes of
interacted solitons in non-integrable systems. The process of bipolar
soliton collision within the Schamel equation is presented in Fig. 9.

To study the complex soliton dynamics with different polarities,
we set initial wave field as a superposition of separated elevation
and depression solitons. Thus we set these solitons to have random
amplitudes uniformly distributed in [1, 3] and [−1,−3] respectively. The
example of the initial soliton gas is presented in Fig. 10.

Solitons interact with each other over time and there are collisions
of big number of solitons. It may contribute to significant growth of
the wave field. Thus, in considered realizations the maximum wave
field reached almost 7.0 (Fig. 11). The wave field, which contains this
freak wave is presented in Fig. 12 and more details of its formation is
depicted in Fig. 13.

In the process of nonlinear interaction skewness changes from −0.4
to 0.35 in one realization, but the ensemble of bipolar solitons is close
to be symmetrical, and the average value of this statistical moment
takes values around zero. Skewness takes both positive and negative
values depending on prevalence of positive and negative solitons. Kur-
tosis being the normalized integral of the wave field in fourth power
takes values from 4.3 to 6 in one realization, however the deviation of
he averaged value is much less. Moreover, Fig. 14 demonstrates the
radual growth of the averaged value of kurtosis. It may be explained
y increasing of number of small amplitude waves (Fig. 15), thus
arge waves become a ‘‘more extreme’’ and kurtosis gradually increases.
his behavior of kurtosis differs from the KdV model, where averaged
urtosis reached the steady state. The increase in kurtosis indicates the
mplification of the distribution function tails (Fig. 16).

. Conclusion

In this study, we have investigated the dynamics of soliton gases
sing the Schamel equation as our primary framework. Our research
nvolved a numerical exploration of various statistical characteristics,
ncluding distribution functions and moments, for both unipolar and
ipolar soliton gases. Despite the non-integrability of the Schamel
quation, the degree of dispersion generated during soliton interactions
emained relatively modest, especially in the unipolar scenario. Conse-
uently, our findings closely aligned with the predictions of the KdV
nd mKdV equations in the case of unipolar solitons. Nevertheless, in
he scenario with bipolar characteristics, we noticed a significant devi-
tion from the mKdV model, especially in terms of kurtosis behavior.
he observed rise in kurtosis indicates the enhancement of distribution
unction tails, indicating the existence of high-amplitude waves.

These novels challenge our previous understanding and highlight
he unique characteristics of solitary wave collisions in this particular
quation. By unraveling the distinct behavior and properties of solitary
ave collisions in the Schamel equation, our study contributes to the
roader understanding of solitary wave dynamics. These findings open
p new avenues for exploring the intricate dynamics and interactions
f solitary waves in non-integrable systems.
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Fig. 8. Histogram of wave amplitude at 𝑡 = 0 (left) and at 𝑡 = 1000 (right).
Fig. 9. Interaction process of bipolar soliton interaction within the Schamel equation.
Fig. 10. Initial distribution of bipolar solitons.

Fig. 11. Maximum of wave amplitudes over time of the bipolar soliton.
5

Fig. 12. Wave field of bipolar solitons at 𝑡 = 416. Zoom of the freak wave is on the
bottom.
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Fig. 13. Spatial–temporal diagram of bipolar soliton gas and zoom in the region of freak wave formation.

Fig. 14. Temporal evolution of the skewness and kurtosis of the bipolar soliton.
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Fig. 15. Histogram of wave amplitude at 𝑡 = 0 (left) and at 𝑡 = 1000 (right).
Fig. 16. Distribution function of wave amplitudes at different times averaged over 20
realizations.
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