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ABSTRACT

The evolution of nonlinear wave groups that can be associated with long-lived soliton-type structures is analyzed, based on the data of
numerical simulation of irregular deep-water gravity waves with spectra typical to the ocean and different directional spreading. A procedure
of the windowed Inverse Scattering Transform, which reveals wave sequences related to envelope solitons of the nonlinear Schr€odinger equa-
tion, is proposed and applied to the simulated two-dimensional surfaces. The soliton content of waves with different directional spreading is
studied in order to estimate its dynamical role, including characteristic lifetimes. Statistical features of the solitonic part of the water surface
are analyzed and compared with the wave field on average. It is shown that intense wave patterns that persist for tens of wave periods can
emerge in stochastic fields of relatively long-crested waves. They correspond to regions of locally enhanced on average waves with reduced
kurtosis. This eventually leads to realization of locally extreme wave conditions compared to the general background. Although intense
soliton-like groups may be detected in short-crested irregular waves as well, they possess much shorter lateral sizes, quickly disperse, and do
not influence the local statistical wave properties.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0213239

I. INTRODUCTION

Most frequently wind-generated oceanic gravity waves and swells
are treated as linear combinations of random harmonic or Stokes
waves with independent individual phases. Nonlinear effects are con-
sidered by theories to be weak corrections unless waves start to break.
Due to the specific property of the deep-water dispersion relation, the
second-order quadratic nonlinearity corresponds to non-resonant
wave triplets, thus manifests itself solely through alteration of individ-
ual wave shapes from sinusoidal. In the spectral Fourier representation,
this effect is described by phase-locked bound harmonics.1,2

Exact resonances are allowed between deep-water gravity waves
in the next-order cubic nonlinearity. Within the traditional phase-
averaged kinematic theory on the evolution of the wave spectral den-
sity, the four-wave interactions govern an extremely slow evolution of
the wave spectrum with the characteristic timescale inverse propor-
tional to the wave steepness in power four.2

The keen interest in a couple of recent decades to quasi-resonant
wave quartet interactions that support the dominant type of deep-
water wave instability caused by the Benjamin–Feir mechanism (the
modulational instability) has resulted in the general recognition of this

phenomenon to be an effective mechanism of water wave intensifica-
tion. In addition to the acceptance by a part of the scientific commu-
nity of the hypothesis that registered rogue waves (abnormally high
waves, see, e.g., Ref. 3) are predominantly caused by the Benjamin–
Feir instability,4,5 it has been proven theoretically and experimentally
that the probability of occurrence of high waves increases under the
conditions of developing modulational instability.6–11 The correspond-
ing wave dynamics occurs with a sub-kinetic timescale inverse propor-
tional to the squared wave steepness. Thus, the related effects can
represent a serious threat in the ocean, which cannot be predicted by
the existing forecasting routines.12 Meanwhile, we should mention that
this viewpoint remains still disputable due to some works, claiming
that the modulational instability conditions are not achievable in the
real ocean, see, e.g., Refs. 13–16.

The instability analysis of a plane wave with respect to long per-
turbations is today a classic exercise, see, e.g., Ref. 17. The instability
threshold relates the wave steepness and the length of perturbation.
The nonlinear stage of the Benjamin–Feir instability may be effectively
described within the weakly nonlinear equation for slow modulations,
the nonlinear Schr€odinger equation (NLSE), in terms of so-called
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breather solutions.18–20 While breathers represent idealized examples of
wave trains, other configurations of unstable nonlinear wave sequences
admit exact analysis within the NLSE too (see, e.g., Ref. 12). The general
description of the nonlinear stage of the modulational instability within
the NLSE is, in principle, possible, thanks to integrability of this equa-
tion by the Inverse Scattering Transform19,20 (IST), but it is very difficult
technically. Importantly, the model solutions for modulationally unsta-
ble waves are frequently considered as theoretical prototypes of rogue
waves. Many of them have been successfully reproduced in laboratory
conditions, where they retain similarity to the NLSE solutions even in
strongly nonlinear and strongly dispersive regimes.21–26

From the viewpoint of the IST, a breather solution of the NLSE is
an envelope soliton on a pedestal formed by the background plane
wave (see, e.g., the book by Akhmediev and Ankiewicz27 or the discus-
sion in Ref. 28). All modulationally unstable modes are linked to dis-
crete eigenvalues of the scattering problem associated with the
NLSE;19,20 the eigenvalues under the decaying boundary conditions in
infinite line correspond to envelope solitons and specify their ampli-
tudes and velocities. It was shown in Ref. 28 that the inherent ampli-
tude of a breather is exactly the same as the amplitude of the envelope
soliton when the breather background is removed. The distinction
between solitons and breathers in irregular wave fields (see, e.g., Ref.
29) may be quantified in terms of the ratio between the soliton/
breather amplitude and the characteristic amplitude of the back-
ground. In particular, the expression for Kuznetsov breather reduces
to an envelope soliton in the limit of negligibly small background
waves; the Peregrine breather is characterized by a soliton with twice
larger amplitude than the unperturbed background.3,28

Therefore, for a meaningful interpretation of nonlinear wave
fields, it seems to be convenient to operate with characteristics of enve-
lope solitons, which are the base elements of coherent wave dynamics.
Envelope solitons, including the limit of short groups of steep waves,
were registered in numerical and also laboratory simulations, see the
bibliographic review in our preceding paper Ref. 30 and references
therein, which we do not reproduce here. More recently, the applicabil-
ity of the envelope soliton concept to describe interacting sequences of
nonlinear wave groups (“soliton gases”) was shown in numerical and
laboratory experiments;31 an emergence of envelope solitons from
irregular waves in numerical experiments was discussed in Ref. 32;
IST-based perturbation theory was applied in Ref. 33 to interpret the
dynamics of coupled envelope solitons modeled numerically. A mea-
surement of a giant wave group in the Atlantic Ocean associated with
an NLSE envelope soliton was reported in Ref. 34. A greater number
of wave groups recorded in the Pacific Ocean, treated as envelope soli-
tons, were analyzed in the recent Ref. 35.

Crucially, in the majority of conducted studies, the interpretation
of propagating waves in terms of envelope solitons (or breathers) was
performed at a single spatial location. It remained unclear whether the
identified envelope solitons behaved similar to solitons at a later time.
In particular, where is the registered “envelope solitons” long-lived
structures? According to the recent experimental and numerical
data,30,33,35–38 intense envelope solitons of collinear waves can, indeed,
survive for Oð101–102Þ wave periods and more in calm water, and also
when surrounded by irregular background waves and when interact
with other envelope solitons.

Note that though the results of the one-dimensional NLSE theory
may be extended to oblique perturbations39 and opposite (standing)

wave systems,26 in the general situation of essentially directional waves,
the qualitative picture of the nonlinear surface wave dynamics and the
corresponding approximate solutions within the two-dimensional
NLSE change dramatically. The 2D version of the NLSE losses the
property of integrability; the nonlinearity becomes defocusing in the
lateral direction; planar envelope solitons are transversely unstable; sta-
ble configurations of solitary patterns of directional waves in deep
water are unknown. The effect of modulational instability quickly van-
ishes when the directional spreading increases8,40 and may be efficient
only under specific conditions, e.g., of waves guided by topographic or
current peculiarities.41–43

Thus, though some evidences of long-term propagation of coher-
ent nonlinear groups of unidirectional waves in deep water are present
in the literature, it is until now completely unclear how long they can
exist under the conditions of directional waves natural to the open
ocean. The present work addresses this question by means of the direct
numerical simulation of nonlinear evolution of irregular directional
surface waves within the primitive hydrodynamic equations, and sub-
sequent analysis of the envelope soliton content in the simulated surfa-
ces using a windowed IST (WIST)-based procedure.

The paper is organized as follows. In order to increase the chance
to face a large-amplitude envelope soliton in the stochastic field of
water waves, we use a particular realization of random JONSWAP
waves from Ref. 44, which, in the planar geometry, leads to the forma-
tion of a long-lived intense envelope soliton.30 The approach, which
we follow to produce the initial conditions for the simulation of direc-
tional waves with a given width of the angular spectrum, is described
in Sec. II. The main features of the conducted direct numerical simula-
tions are given in Sec. III. The windowed IST procedure (called hereaf-
ter WIST), which was presented in Ref. 30 for unidirectional waves, is
generalized in the present work to the case of directional waves as
described in Sec. IV. The immediate result of its application to the sim-
ulated data is presented in Sec. IV as well. A deeper analysis of the soli-
ton content in the simulated wave surfaces, including the estimation of
the characteristic lifetimes of envelope solitons in fields with different
directional spreading, is performed in Sec. V. The impact of soliton-
like wave patterns on the statistical properties of water waves is evalu-
ated in Sec. VI. The main conclusions of the work are summarized in
Sec. VII.

II. CONSTRUCTION OF THE INITIAL CONDITIONS

We proceed from the expectation that the probability of forma-
tion of a long-lived soliton-type group in the field of irregular broad-
banded sea waves is low. In this work, specific initial conditions for the
numerical simulation of directional gravity waves are constructed,
such that in the limit of a vanishing directional spread, the modeling
replicates the simulation of unidirectional waves where a long-lived
group was, indeed, observed. Such an event in the field of collinear
waves was analyzed in detail in Ref. 30; it corresponds to the realization
No. 295 from the stochastic simulations reported in Ref. 44. Few other
realizations from that set were shown to contain long-lived soliton-
type groups too.30 Thus, the considered realization is specific but not
unique.

We take that particular realization of irregular waves No. 295 as the
base, gbðxÞ ¼ g295ðx; t ¼ 0Þ, and produce two-dimensional fields of the
surface displacement, gðx; y; t ¼ 0Þ with gðx; y ¼ 0; t ¼ 0Þ ¼ gbðxÞ,
following the method described later. Here, g denotes the water surface
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displacement, x and y are the spatial coordinates along and transverse the
main direction of wave propagation, and t is the time.

The initial condition g295ðx; t ¼ 0Þ corresponds to the
JONSWAP frequency spectrum SðxÞ with the peak period Tp¼ 10 s
and the peakedness parameter c¼ 3, which is transformed to the
wavenumber spectrum S(k) according to the linear dispersion relation
for deep-water waves,

k ¼ x2

g
; (1)

and then to Fourier amplitudes for wavenumbers k, jĝbðkÞj ¼ SðkÞ,
where the “hat” stands for the Fourier transform function. Here, x
denotes the cyclic frequency and g¼ 9.81m/s2 is the acceleration due
to gravity. Correspondingly, the peak wavenumber is kp � 0:04 rad/m
(the dominant wavelength is about 150m). The nominal significant
wave heightHs, which is about four times the root mean square surface
displacement grms, isHs � 4grms � 3:5 m, see details in Ref. 44.

At first, a trial (tentative) irregular surface wave field gtrðx; yÞ is
produced, which is characterized by the same distribution of energy in
the Fourier transform for wavenumbers as the base wave,
jĝtrðkÞj ¼ SðkÞ, where k is now the length of wave vectors,
k ¼ jkj; k ¼ ðkx; kyÞ, for the two-dimensional surface gtrðx; yÞ. The
directional distribution, jĝtrðkx; kyÞj ¼ SðkÞDðhÞ, is defined according
to the popular in oceanography cosine-squared function, same as in
Ref. 45,

DðhÞ ¼
2
Dh

cos 2
ph
Dh

if jhj � Dh
2
;

0 if jhj > Dh
2
;

8>>><
>>>:

(2)

where h is the angle with respect to the Ox axis, tan h ¼ kx
ky
, and the

parameter Dh; 0 � Dh � 180�, determines the sector of possible wave
directions with respect to the dominant direction h¼ 0. Complex
phases of the Fourier transform ĝtrðkx; kyÞ are set to be random and
uniformly distributed.

In order to introduce an additional degree of randomness, each
amplitude of the Fourier transform for the 2D trial initial condition
jĝtrðkx; kyÞj was multiplied by a normally distributed random factor.
As a result, the Fourier amplitudes ĝtrðkx; kyÞ are irregular in both
complex phases and amplitudes. The distribution for wavenumbers
corresponds well to the JONSWAP function S(k); the distribution of
wave propagation directions is described on average by the cos 2

shape (2).
At the next step, the residual wave shape for y¼ 0 between the

base and the trial waves is computed, D1DðxÞ ¼ gbðxÞ � gtrðx; y ¼ 0Þ;
it is transformed to a two-dimensional field D2Dðx; yÞ by introducing
the directional distribution specified by the function DðhÞ with the
same choice of Dh, so that the distribution for the wave vector lengths
retains, D̂1DðkÞ ¼ D̂2DðkÞ. The generated field D2Dðx; yÞ is then super-
imposed with the trial field, gðx; y; 0Þ ¼ gtrðx; yÞ þ D2Dðx; yÞ, what
gives the desired initial condition gðx; y; 0Þ with the property
gðx; 0; 0Þ ¼ gbðxÞ. Since the correction function D2Dðx; yÞ is charac-
terized by the same distribution of energy between wave lengths and
directions as the irregular part, the resultant wave surface keeps the
distributions unchanged, i.e., the surface gðx; y; 0Þ corresponds to
JONSWAP waves with the given directional spread Dh.

Examples of the generated water surfaces for different directional
spreads Dh are shown in Fig. 1. The surface has the size Lx � 9600 m
� Ly � 2400 m, which is about 23 square kilometers. The domains
are periodic in both directions Ox and Oy. The longitudinal sections at
y¼ 0 are shown with red color; they represent identical wave shapes
gbðxÞ.

Finally, the surface velocity potential at the initial moment of
time, Uðx; y; t ¼ 0Þ, is computed based on the generated surface dis-
placement gðx; y; 0Þ according to the linear theory.17 These fields are
used to initiate the direct numerical simulations as detailed in Sec. III.

Five realizations per each value of the spreading parameter Dh
from the set Dh ¼ f12�; 24�; 36�; 48�; 62�g have been simulated in
this study. The range of directional spreads is taken similar to Ref. 45.
One may see from Fig. 1 that the simulated conditions correspond to
ones from long-crested, Dh ¼ 12�, to pretty short-crested, Dh ¼ 62�.
The upper panel in Fig. 1 corresponds to the planar case Dh ¼ 0,
which is used in this work for the reference. All the realizations are
characterized by the significant wave heightHs � 3:5 m.

III. NUMERICAL SIMULATION OF DIRECTIONALWAVES

In this work, the evolution of gravity waves on the surface of infi-
nitely deep water is simulated using the primitive equations of hydro-
dynamics for potential motions of the ideal fluid.17 The governing
system of equations consists of two-surface boundary conditions:

gt þrU � rg ¼ uz 1þrg2
� �

at z ¼ g; (3a)

Ut þ ggþ 1
2
ðrUÞ2 ¼ 1

2
u2
z 1þrg2
� �

at z ¼ g; (3b)

the Laplace equation

r2uþ uzz ¼ 0 for z � g; (4)

and the decaying at infinity bottom condition

u ! 0 when z ! �1: (5)

Here, uðx; y; z; tÞ is the velocity potential, and Uðx; y; tÞ
¼ uðx; y; z ¼ g; tÞ. The gradient operator acts in the horizontal plane
(x, y) only,r � ð@=@x; @=@yÞ; the axis Oz is upward directed. The set
of Eqs. (3)–(5) for the initial conditions gðx; y; 0Þ and Uðx; y; 0Þ con-
stitutes the Cauchy problem in a closed form, which is solved numeri-
cally using the High-Order Spectral Method46 (HOSM), see details of
realization of the algorithm in Refs. 47 and 48.

In the HOSM, the velocity field in the perturbed upper water
layer is approximated using the Taylor expansion of the orderM near
the horizon z¼ 0, what allows to relate the surface velocity potential
Uðx; y; tÞ with the potential at the water rest level uðx; y; z ¼ 0; tÞ, in
order to use the analytic solution to the Laplace equation. Therefore,
the method is fully accounting dispersive effects, but is limited in non-
linearity. For the choice M¼ 3 which is used in the present work, it
describes accurately the nonlinear interactions between up to 4 waves,
what, in particular, allows simulation of the Benjamin–Feir instability
and envelope solitons. Few simulations with a higher nonlinear param-
eter M¼ 4 were also performed but did not show any significant
difference.

Following the approach by Dommermuth,49 the nonlinear
terms of simulated Eq. (3) were put in force slowly for the first

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 077101 (2024); doi: 10.1063/5.0213239 36, 077101-3

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/phf


20Tp (0 � t � 200 s) to ensure adiabatic transition of the linear initial
condition to nonlinear waves.

The numerical integration in time was performed using the 4-th
order Runge–Kutta method with the constant step of 0.0625 s. The
accuracy of simulations was controlled by checking the conservation
of the total mechanical energy. In all simulations, the relative deviation
of the total energy in the periods of truly nonlinear simulations 200 s
� t � 1400 s was within the range �7:8� 10�5 and þ7:5� 10�4.
Wave overturning did not occur in these simulations.

IV. SEARCH FOR ENVELOPE SOLITONS

The simulated water surfaces are further analyzed to reveal wave
patterns similar to envelope solitons of the nonlinear Schr€odinger
equation. The NLSE is the weakly nonlinear approximation for waves
with narrow spectrum. For deep-water waves propagating mainly
along the Ox axis, the equation may be written in the following form:17

i
@w
@t

þ C0
@w
@x

� �
þ x0k20

2
jwj2wþ x0

8k20

@2w
@x2

� x0

4k20

@2w
@y2

¼ 0; (6)

where k0 and x0 are the carrier wavenumber and frequency related by
the dispersion relation (1), respectively, C0 ¼ x0=2=k0 is the group

velocity of the carrier wave, and wðx; y; tÞ is the complex wave ampli-
tude so that the surface displacement to the leading order reads

gðx; y; tÞ ¼ 1
2
wðx; y; tÞ exp ix0t � ik0xð Þ þ c:c: (7)

Waves propagate mainly along the Ox axis. As the linear part of the
NLSE (6) corresponds to the Taylor expansion of the dispersion rela-
tion xðkÞ ¼ ffiffiffiffiffi

gk
p

in the close vicinity of the carrier wave k0 ¼ ðk0; 0Þ,
namely, ðx�x0Þ� @x

@kx
jk0ðkx�k0Þþ 1

2
@2x
@k2x

jk0ðkx�k0Þ2 þ 1
2
@2x
@k2y

jk0k2y , it
can be easily seen that the dispersion coefficients in (6) have dif-
ferent signs. The effect of transverse dimension enters the two-
dimensional NLSE (6) solely through the last term. If this term is
canceled, the theories (6) and (7) describe a strictly planar prob-
lem. In this case, the NLSE possesses the property of integrability
by means of the IST,19,20 which allows a comprehensive analysis
of complicated nonlinear wave phenomena using appropriate
mathematical methods.

In particular, envelope solitons that have the form of stable
groups are exact solutions of the integrable NLSE. These groups do not
disperse with time and interact elastically with all other waves includ-
ing envelope solitons. One envelope soliton of the one-dimensional
NLSE is given by the exact solution,

FIG. 1. Examples of initial surfaces gðx; y; 0Þ characterized by different wave direction spreads Dh. The longitudinal sections at y¼ 0 are shown with the red color. Other longi-
tudinal sections used in the windowed IST analysis are shown with the black color.
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wESðx; tÞ ¼ As

exp
i
4
s2x0t þ i/s

� �

cosh½ ffiffiffi
2

p
sk0 x � xs � C0tð Þ	 ; s ¼ k0As; (8)

where As is the soliton amplitude; the maximum wave steepness s has
the meaning of the dimensionless amplitude and characterizes the
degree of wave nonlinearity. The parameters xs and /s are the refer-
ence location and phase, respectively. The soliton (8) propagates with
the group speed of the carrier C0 and consists of individual waves of
the length of the carrier. Their apparent frequency x0 1þ 1

4 s
2

� �
expe-

riences nonlinear upshift. The solution (8) may be generalized using
the Galilean transformation, and then envelope solitons may have
wavenumber correction ks and corresponding correction to the group
velocity, Vs, and also to the frequency; we omit these details here, and
they may be found in Ref. 50. An exact solution of the two-
dimensional NLSE (6) in the form of a planar envelope soliton may be
straightforwardly constructed from (8), though it is known to be unsta-
ble with respect to sufficiently long transverse perturbations.51

It is clear from (8) and (7) that higher envelope solitons contain
smaller number of wave oscillations. The soliton groups are shown in
Fig. 2 for a relevant range of the steepness parameter. Note that even
steeper and shorter envelope solitons than shown here were repro-
duced in laboratory experiments.36 The characteristic spatial width
w of an envelope soliton (8) may be defined as

wðAs; k0Þ ¼ W
sk0

; (9)

where W is a constant. The blue and red curves in Fig. 2 show the
bands 6w for the choices W¼ 2 and W¼ 5, respectively, which will
be used later in order to select spatial areas occupied by solitons.

The principle information about coherent wave structures such
as solitons or breathers at any given instant t0 is contained in the

discrete spectrum fkg of so-called associated (with the NLSE) scatter-
ing problem,19,52 which has the form of an eigenvalue problem on the
column vector functionWðxÞ,

d
dx

W ¼
ffiffiffi
2

p
k0

k k0wðx; t0Þ
�k0w


ðx; t0Þ �k

� �
W: (10)

When decaying boundary conditions are imposed, Wðx ! 61Þ ! 0,
then each discrete eigenvalue k corresponds to one envelope soliton
with the amplitude As and velocity Vs, which are specified by the fol-
lowing relation:

k ¼ 1
2
k0As þ iffiffiffi

2
p Vs � C0

C0
: (11)

Here, the soliton velocity Vs is assumed to be related to the intrinsic
soliton wavenumber ks through the linear relation for a wave group

velocity Vs ¼ 1
2

ffiffiffi
g
ks

q
.

All solitons (and breathers) if they are present in the wave field of
arbitrary complexity but governed by the integrable NLSE may be found
using the direct scattering problem (10), though the implementation of
this procedure is technically demanding, see, e.g., Refs. 53 and 54.

A procedure of the windowed IST (WIST) analysis was proposed
in our works Refs. 28 and 55 and further improved in Refs. 30 and 50,
where its ability to relatively accurately estimate the amplitudes As,
velocities Vs, and locations xs of solitons in broadband fields of unidi-
rectional intense waves was demonstrated. The following key charac-
teristics of the WIST approach may be emphasized:30 (i) the approach
is targeted to the search of intense solitons; (ii) a windowed transform
is used to identify approximate locations of envelope solitons; the
information about their complex phases is not available; (iii) the wave
envelope is reconstructed from the surface displacement using the
high-order Dysthe theory for bound waves, and the relation (7) is just
the first-order approximation; (iv) at the second stage, the direct scat-
tering problem is solved in a larger sampling window to estimate the
soliton parameters As and Vsmore precisely.

In order to apply the WIST to two-dimensional fields of direc-
tional waves, the simulated wave surfaces gðx; y; tÞ have been sliced
into longitudinal sections at a number of transverse locations y¼ dn,
dn ¼ f0;6150, 6300, 6450, and 6600m g, as shown by colored
curves in Fig. 1. This spacing roughly corresponds to one wavelength.
As the soliton group is expected to emerge near the middle section
y¼ 0, we focus primarily on the region close to it.

The sequences of spatial series gðx; dn; tmÞ for all slices dn and
time instants tm with the stepping tmþ1 � tm ¼ Tp=2 ¼ 5 s have been
analyzed one-by-one using exactly the same WIST method as in Ref.
30. The WIST procedure returns the set of soliton parameters
fðAs;Vs; xsÞg for each space series. If more than one envelope soliton
is detected for approximately the same location, only the one with the
larger amplitude is taken for consideration. The result of this analysis
is shown for two spreads Dh in Figs. 3 and 4. There, the amplitudes of
revealed solitons in different longitudinal slices for the time instants
t ¼ 0; 10;…; 2800 s are shown with circles. The size and color of the
circles reflect values of the soliton amplitudes As.

In both cases presented in Fig. 3, intense envelope solitons with
amplitudes up to about As � 3:5 m are found. The total number of
soliton-like groups found by the WIST per each choice of the direc-
tional spreading parameter Dh is of the order 1� 104 (this estimate

FIG. 2. Surface displacements gðx; 0Þ that correspond to envelope solitons (7) and
(8) with k0 ¼ 0:04 rad/m, xs¼ 0, and /s ¼ 0 (black curves) for the steepness
parameter s ¼ f0:05; 0:1; 0:15; 0:2g. The blue and red curves show the bands
6w (9) with W¼ 2 and W¼ 5, respectively.
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counts one soliton group revealed at two different time moments or
two different lateral positions as two). The number of revealed solitons
per each instant does not approximately change with time. Meanwhile,
a remarkable difference between the two examples given in Fig. 3 is
obvious. In the long-crested wave field [Fig. 3(a)], large soliton ampli-
tudes are located laterally close to each other. They almost do not move
in the system of references traveling with the dominant wave propaga-
tion velocity determined as Cg ¼ ðCg ; 0Þ; Cg ¼ xp=ð2kpÞ � 7:8m/s.

The situation of short-crested waves [Fig. 3(b)] is characterized by a
great extent random arrangement of detected small-amplitude solitons
in the space-time domain; large-amplitude solitons (large bright spots)
appear for short time intervals.

The impression of a greater number of small-amplitude solitons
in the case of a broader angular spectrum is rather misleading.
Distributions of detected soliton amplitudes for different values of the
parameter Dh are shown in Fig. 5; at first glance, they are rather simi-
lar. In particular, 45%–60% of soliton amplitudes As are less than 1m,
and only 15%–25% of them are above Hs=2. (Envelope solitons with
very small amplitudes were discarded by the WIST procedure.) It is
important for the present study that the distributions for smaller values
of Dh are characterized by slightly increased fractions of solitons with
large amplitudes, which may be noticed in Fig. 5.

A further analysis is presented in Fig. 4, where the same distribu-
tion of soliton amplitudes as in Fig. 3 is given by color circles for a sin-
gle longitudinal cut y¼ 0. These data are also used to build a soliton
amplitude function Aðx; y; tÞ as will be described in Sec. V, which is

FIG. 3. Distribution of soliton amplitudes As (circles) found using the WIST applied
to longitudinal cuts (shaded planes) of the water surfaces for two simulations with
Dh ¼ 12� (a) and Dh ¼ 62� (b). Size and color of the circles reflect the magni-
tudes of soliton amplitudes, see the colorbar.

FIG. 4. Soliton amplitudes shown in Figs. 3(a) and 3(b) for the slice y¼ 0 (circles)
and forecasts of the soliton tracks within next 1 min (sticks). Level lines correspond
to the amplitude function Aðx; 0; tÞ.
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represented by contour curves. In addition, the estimated soliton veloc-
ities Vs are used to make predictions of future soliton positions. In the
figure, the expected tracks of solitons in the next 60 s are shown with
black line segments. Note that the graphs are presented in the system
of references moving with the group velocity Cg � 7:8m/s; the values
of Vs range from 5.3 to 8.2m/s.

It is obvious from Fig. 4(a) that the path of the maximum soliton,
which is originally located at x0 � 4000 m is traced correctly except
for the time t � 900 s when, for some reason, the position of the soli-
ton quickly shifts by about 250 m (which is below the estimated soliton
length, see Fig. 2). It is also clear that the estimated velocities of
smaller-amplitude solitons well agree with their actual movements;
many of them travel with speeds smaller than Cg.

The picture in Fig. 4(b) is much less regular; the estimated veloci-
ties seem to better characterize the apparent motion of solitons, which
have large amplitudes. Note that here we completely disregard the
velocity components transverse to the main direction of wave propaga-
tion; therefore, it is naturally to expect that the conditions of short-
crested waves should be described less consistently.

V. INVESTIGATION OF SOLITON-LIKEWAVE GROUPS

In the reference simulation30 of planar waves Dh ¼ 0, an intense
envelope soliton emerged and stably propagated for more than two
hundred wave periods with velocity very close to dominant waves,
Vs=Cg ¼ 1:006 0:02, and approximately constant amplitude,
As=ð4grmsÞ ¼ 1:006 0:16. Let us consider the effect of directional
wave propagation on this soliton. In the limit Dh ! 0, the soliton
structure is located at t¼ 0 near x0 ¼ 4000 m and y0 ¼ 0, see
Fig. 3(a). To select the area in the vicinity of the soliton, we use a
comoving mask of a round shape,

x � x0 � Cgtð Þ2 þ y � y0ð Þ2 � w2; (12)

as shown in Figs. 6 and 7 by dashed green lines. Here, w is given by
(9), where we use the peak wavenumber, k0 ¼ kp, the steepness
s¼ 0.14, which corresponds to the envelope soliton with amplitude
equal to the significant wave height, As ¼ 4grms � 3:5 m, and W¼ 5,
see red curves in Fig. 2.

FIG. 5. Distributions of revealed soliton amplitudes for different widths of the angular
spectrum Dh (each case contains between 1:2� 104 and 1:41� 104 amplitudes).

FIG. 6. Soliton fields Aðx; y; tÞ (13) found by the WIST procedure at different
instants of time for a simulation with Dh ¼ 12�. The pseudocolor gives the
values of A in meters, see the colorbar. The region (12) with x0 ¼ 4000 m and
y0 ¼ 0; w � 880 m is shown by the dashed green contour.

FIG. 7. Same as in Fig. 6 but for a simulation with Dh ¼ 62�.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 077101 (2024); doi: 10.1063/5.0213239 36, 077101-7

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/phf


In Figs. 6 and 7, the pseudocolor represents the combined soliton
function Aðx; y; tÞ, which is constructed as the maximum envelope
over all revealed solitons with the parameters fðAs; ks; xsÞg obtained
by the WIST. The function Aðx; y; tÞ is first defined on a sparse grid
y ¼ fdng and t ¼ ftmg where the WIST is performed,

Aðx; y ¼ dn; t ¼ tmÞ ¼ max
s

jwESðx; 0;As; ks; xsÞj; (13)

and then interpolated onto a finer grid to produce smooth patterns.
Isolevels of this function are shown in Fig. 4.

Eight panels in Figs. 6 and 7 correspond to different time instants
of the wave field evolution. Note that the transverse size of the soliton
fields Aðx; y; tÞ, 1200m, is about twice smaller than Ly; the fields
Aðx; y; tÞ are periodic along the longitudinal axis Ox but are not peri-
odic in the transverse direction.

It is clear from Fig. 6 that a long-lived wave pattern, which is rec-
ognized by the WIST as an intense envelope soliton, is, indeed, gener-
ated in the selected area and retains significant energy throughout the
simulation period. The intense soliton-type structure is already
detected at t¼ 0. It is interesting to note that the transverse shape of
the soliton pattern exhibits significant transformation over time, and it
may be oriented transverse or oblique to the main wave course,
although the pattern is still recognized as containing a soliton. The
revealed soliton-like structure has the transverse size greater than that
in the direction of propagation, but it never extends to the entire avail-
able transverse size.

Another stable structure of a smaller-amplitude may be also
found in Fig. 6 at x � Cgt � 7000 m, y � �500 m in the time interval
from t¼ 0 to t¼ 1200 s. Some more patterns that correspond to wave
groups recognized as envelope solitons may be seen in Fig. 6 as well,
but they survive for significantly shorter periods of time.

The picture of the soliton field Aðx; y; tÞ in short-crested waves
looks very different, see Fig. 7. A bright spot in the center of the

selected domain at t¼ 0 becomes much less pronounced at t¼ 200 s
when the simulation becomes truly nonlinear and vanishes after. At
later times, new energetic spots appear at different instants and in dif-
ferent places, which correspond to wave groups recognized by the
WIST as intense NLSE solitons, though they quickly disappear. The
revealed “envelope solitons” in the short-crested sea state have trans-
verse sizes similar to the longitudinal ones. Comparing Fig. 7 against
Fig. 6, one may conclude that the number of soliton-like patterns is
greater in the short-crested case.

Assuming that the selected according to condition (12) area in
Fig. 6 at all times captures the soliton of our interest, we estimate its
instantaneous amplitude as the maximum of the soliton function
Aðx; y; tÞ in this region. We do so for all five simulated realizations
that correspond to Dh ¼ 12� and also for the other conditions of the
directional spreading. The results of this processing are presented in
Fig. 8. The soliton amplitudes in the selected regions are shown by
black curves for each realization. In addition, the shaded areas show
the maximum soliton amplitudes in the entire domain of simulation
among all realizations. In the leftmost panel for Dh ¼ 12�, the maxi-
mum soliton amplitudes found in the simulation of unidirectional
waves30 are also given by blue dots.

It follows from Fig. 8 that in all the wave realizations, intense
soliton-like groups are found initially close to the point (x0, y0) with
amplitudes in the range 3:2� 4 m. The intense soliton-like groups
decay with time in all simulations of directional waves, unlike in
the simulation of strictly planar waves. The evolution of soliton ampli-
tudes is generally synchronous in all experiments with long-crested
waves Dh ¼ 12�. In cases of intermediate directional spreads
Dh ¼ 24� andDh ¼ 36�, the initial soliton amplitudes in different
realizations can differ considerably and can exceed the value of Hs; the
subsequent evolution of the amplitudes can also be quite different.
Under conditions of relatively narrow angular spectrum Dh � 36�, the
highest solitons occur in the selected region, where an intense soliton

FIG. 8. Maximum soliton amplitudes for different situations of the directional spreading: in the selected region as shown in Figs. 6 and 7 (five black curves for different realiza-
tions) and in the entire simulated domain over all realizations (pink shadowed area). The maximum soliton amplitude in the unidirectional simulation30 is given by blue dots in
the leftmost panel for the reference. The vertical dotted line corresponds to t¼ 200 s.
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structure is expected to appear. For broader angular spectra, intense
solitons can emerge in different places, since the shaded areas in the
plots are often located above the black curves.

As expected, the characteristic lifetime of intense soliton-like pat-
terns is maximum in situations of long-crested waves. At large times,
the maximum soliton amplitudes seem to stay at approximately the
same level about 0:6…0:7Hs in all cases. Under conditions of a rela-
tively narrow angular spectrum, the maximum soliton amplitude
decays to the background level within a few dozens of wave periods,
whereas under short-crested wave conditions, the characteristic life-
time of soliton-like structures is just a few wave periods. It is interesting
to note that in the simulations of short-crested waves, the momentary
amplitudes of discovered “solitons” can be significantly higher than
the value ofHs for a short time.

Thus, it can be concluded that long-lived nonlinear wave groups
similar to envelope solitons of the NLSE can be detected in directional
wave fields if the width of the angular spectrum is not too large.
Section VI is dedicated to answering the question of how these soliton
structures affect the statistical properties of surface waves.

VI. STATISTICAL FEATURES OF WAVE PATTERNS
CONTAINING SOLITON-LIKE GROUPS

Several snapshots of the evolving water surface are shown in
Fig. 9 in the comoving reference frame for the case Dh ¼ 12� when a
sustained soliton-like pattern is generated. Regions where the intense
soliton is detected are accentuated by red dashed curves (same as the
green circles in Fig. 6). In the selected areas, an intense group of waves
can be discerned at all times. However, other intense wave groups may

be seen in these examples of surfaces as well, which were not recog-
nized as envelope solitons. Therefore, the influence of wave structures
containing envelope solitons on the properties of the wave field as a
whole is not obvious.

In order to test if the presence of soliton-like structures modifies
statistics of the simulated wave fields, we consider separately the areas
where intense solitons are found with the help of the WIST, and the
regions free of solitons. The selection of areas occupied by intense soli-
tons is performed similar to the construction of the soliton function
Aðx; y; tÞ but using a box-shaped generating function,

Sðx; y ¼ dn; t ¼ tmÞ ¼ max
As>Hs=2

HðwðAs; ksÞ � jx � xsjÞ: (14)

Here, Hð�Þ denotes the Heaviside function, which returns 1 if its argu-
ment is positive and 0 otherwise. The maximum is taken over all
revealed solitons with amplitudes exceeding half the significant wave
height. According to Fig. 5, this amplitude condition selects 15%–25%
of the most intense (and most localized) soliton-like groups. The mask
width w is calculated according to Eq. (9) for the corresponding soliton
parameters (As, ks) and W¼ 2, and, thus, narrower adjacent regions
than before are associated with solitons, see the blue line in Fig. 2.
Finally, the sparsely defined function S is interpolated to the finer grid
of the displacement gðx; y; tÞ and is used to divide the water surfaces
in two parts, labeled hereafter as the “soliton” data and “other waves.”

Four statistical moments are computed for the “soliton” and
remaining parts of the surface independently, and also for the original
(unparted) surface according to the following formulas:

�gðtÞ ¼ hgi; r2ðtÞ ¼ h g� �gð Þ2i;

l3ðtÞ ¼
1
r3

h g� �gð Þ3i; l4ðtÞ ¼
1
r4

h g� �gð Þ4i;
(15)

where the angle brackets denote averaging over the space (x, y), the
time span of two dominant wave periods, 2Tp, and the ensemble of
five simulations. The obtained statistical moments for different condi-
tions of the directional spreading are shown in Fig. 10.

According to graphs for the normalized second statistical
moment r (see the top row of Fig. 10), the areas associated with soli-
tons are characterized by larger on average surface perturbations,
which is most significant for narrower angular spectra and is almost
absent for broad spectra with Dh � 48�. Thus, long-lived soliton-like
structures are found in regions characterized by locally enhanced wave
amplitudes.

The curves of skewness l3 in the middle row of Fig. 10 do not
exhibit any difference between the areas with solitons and free of them.
The skewness starts from about zero at t¼ 0 and reaches an approxi-
mately equilibrium value at t¼ 200 s (see the vertical dotted lines)
when nonlinearity of the code becomes fully effective. The curves for
“solitons” are noisier obviously because of a smaller amount of data. It
is interesting to note that in the simulations with different spreading
parameters, the portion of the surface area associated with solitons
does not demonstrate a noticeable dependence on Dh; in all cases, it is
5%–15%.

The fourth statistical moment of the surface displacement, kurto-
sis l4, is often used as an indicator of the ratio of the probabilities of
waves with moderate and extreme amplitudes. For a normal
(Gaussian) random process, the kurtosis is exactly 3. A larger value of
kurtosis means a greater probability of extreme disturbances, a smaller

FIG. 9. Simulated surfaces of long-crested waves Dh ¼ 12� in a comoving refer-
ence frame. The area where an intense soliton-like wave group is detected given by
(12) is marked with the red dashed line.
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value—a lower probability of large perturbations. The graphs in the
bottom row of Fig. 10 clearly show that the surface associated with
soliton-like structures under conditions of a relatively narrow angular
spectrum Dh < 36� is characterized by a kurtosis noticeably less than
3. At the same time, the kurtosis of “other waves” as well as of the
entire surface may become noticeably greater than 3 when waves are
long-crested (Dh ¼ 12�), which is consistent with the generally

accepted understanding.8,56 For a broad directional spreading
Dh � 36�, the values of l4 in the areas occupied by “solitons” and
ordinary waves are similar.

A dedicated study has revealed that the decrease in l4 for soliton
patterns is caused by the growth of r in these regions. If, in the formula
(15), for l4, the value of r in the denominator is replaced by the value
characterizing the entire surface, then under conditions of a small

FIG. 10. Evolution of statistical moments of the surface displacement in the areas associated with envelope solitons, other waves, and all together: the root mean square dis-
placement vs significant wave height (top), the skewness (middle), and kurtosis (bottom). The vertical dotted line corresponds to t¼ 200 s.
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scatter of wave directions, the kurtosis of the “soliton” areas will exceed
the value of 3 several times. Therefore, if the local wave enhancement
is not taken into account, waves in the areas associated with solitons
will exhibit extreme probabilistic properties against the general
background.

VII. CONCLUSIONS

In this work, we present the first example (to the best of our
knowledge) of using the Inverse Scattering Transform to analyze direc-
tional water waves. The research is focused on the spectral conditions
typical of the open ocean. Though storm waves often violate the
assumptions of weak nonlinearity, narrow spectrum and planar geom-
etry implied by the framework of integrable nonlinear Schr€odinger
equation, the idea of using the NLSE and its exact solutions to interpret
sea wave data is quite popular in recent literatures, see, e.g., Refs. 10,
21, 22, 24, 25, 31, 36, and 39 among many others. It has received some
support from laboratory experiments, in which the key examples of
the nonlinear waves dynamics described by the NLSE were reproduced
with reasonable accuracy. The windowed IST procedure employed in
the present work has previously been tested within the Euler equations
using examples of solitary groups50 and irregular planar waves charac-
terized by the JONSWAP spectrum.30

A well-defined group structure of deep-water oceanic waves and
especially registrations of rogue events represented by sequences of
very large waves further motivate interest in possible long-lived non-
linear solitary wave groups. If such stable groups can be recognized in
stochastic sea wave fields, this could become an element of a short-
term forecast of dangerous waves. Indeed, it has been shown in
computational experiments that rogue wave events last longer under
conditions suitable for the Benjamin–Feir instability and the related
process of forming envelope solitons.57,58 It is well known that under
varying conditions (such as local depth and currents, external pump-
ing or dissipation, etc.), linear waves and solitons behave very differ-
ently. At the same time, most of the experimental results refer to
conditions of a single point measurement or/and planar waves. These
restrictions are removed in the present work based on the direct
numerical simulation of the primitive hydrodynamic equations.

Investigation of the soliton content in irregular waves with a pre-
scribed spread of propagation directions is the main objective of the
present work. For the study, we consider particular realizations of
irregular JONSWAP waves, which, in the limit of strictly paraxial
propagation, generate a long-lived soliton-type intense wave
group.30,44 It follows from the research that under conditions of mod-
erate directional spreading, Dh� 30� envelope solitons with ampli-
tudes of the order of the significant wave height 4grms may be
continuously detected for a few tens of wave periods. The decay of
intense soliton amplitudes occurs very similar in different realizations
of the random transverse wave structure in the long-crested case
Dh ¼ 12� but is diverse when Dh � 24�.

Envelope solitons may be detected in irregular wave fields under
conditions of broader angular spectra too; their amplitudes can reach
the significant wave height or even exceed it. However, these groups,
which may resemble envelope solitons by the shape, are, in fact, tran-
sient; they quickly emerge and dissolve. Therefore, the fact that an enve-
lope soliton is detected using the IST-based method in the field of
short-crested waves does not itself mean either that a long-lived nonlin-
ear wave group is found or that the wave conditions are suitable for the
generation of envelope solitons or the modulational instability. At the

same time, in the case of relatively long-crested waves, this may be con-
sidered as a reliable indicator of a presence of a soliton-type structure.

Soliton-like structures in wave fields with relatively narrow angu-
lar spectra are detected in “energy spots” of the water surface, which
are characterized by a locally increased value of the average wave
height. This circumstance is related to a paradoxical result that the
soliton-like wave patterns are characterized by locally smaller values of
the fourth statistical moment (kurtosis) of the surface displacement. At
the same time, the kurtosis of the water surface occupied by detected
solitons exhibits extreme values if the significant wave height of the
entire wave field is used as the reference.
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