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ABSTRACT

We consider the effects of passive tracer clustering (e.g., the magnetic field energy in stellar atmospheres) in a random acoustic velocity field.
A method for numerical modeling of a two-dimensional random acoustic field is proposed. The field is described by a correlation tensor
defined by traveling isotropic waves, taking into account dissipation. Two metrics for measuring the clustering effects are used: concentration
and density. Using numerical modeling, we show that the tracer concentration is almost always clustered. The situation with the density is
different; as the dissipation tends to zero, the time to reach the clustered states increases significantly. In addition, due to the tracer transport
out of the density clustering regions, only a part of the tracer is clustered. For the presented analyses, we considered ensembles of Lagrangian
particles and introduced and applied the statistical topography methodology.
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I. INTRODUCTION

The particle transport in rapidly varying random velocity fields,
in particular in wave velocity fields, is an important problem in phys-
ics. The effects associated with such motion have important applica-
tions in mechanics, hydrodynamics, plasma physics, etc. The study of
the problem of tracer clustering in compressible flows began quite a
long time ago.1–5 A review of clustering problems can be found in Ref.
6. More examples of such effects during transport in rapidly varying
wave fields include, for example, Fermi acceleration, plasma accelera-
tion, etc. can be found in the literature.7–9 Moreover, tracer clustering
is common in stochastic oceanic and atmospheric flows, i.e., spatial
aggregation of various tracers and objects,10–12 marine ecosystems,10

formation of clouds,13 porous media,14 paleontology,15 and
cosmology.16

We focus on the clustering process affected by stochastic acoustic
velocity fields. We assume the velocity field to be purely potential
(compressible). However, in some cases the clustering of the tracer can
occur in velocity fields with a non-vanishing incompressible term as
well.

Clustering can be analyzed using the Fokker–Planck equations17

and with the delta-correlated process approximation, the diffusion
approximation, and perturbation theory.7,9,17–22 These approaches,
however, have certain disadvantages. These approximations are quite
limiting in terms of applicability and constructing a comprehensive

exact theory is unrealistic. Thus, direct numerical modeling makes it
possible to verify the results of approximate analytical methods and,
even further, to clarify and extend the interpretation of analytical esti-
mates. This is exactly what we do in this work. The goal of this paper is
to establish the statistical properties of clustering in random kinematic
acoustic flows with dissipation. We use the same approach for numeri-
cal modeling as in Refs. 23–25. However, we have modified the
method of random velocity field generation to get a correlation tensor
for the acoustics wave field and to take into account dissipation.7,22

The paper is organized as follows: In Sec. II, we formulate the
general problem, equations, characteristics of the random acoustic
velocity field, and some formulas of statistical topography. The numer-
ical results and some analysis are presented in Sec. III. The main results
are in Sec. IV, followed by discussions and conclusions.

II. PROBLEM FORMULATION

The tracer evolution in random velocity fields can be formulated
for both passive and compressible tracers, and the corresponding
descriptions fundamentally differ, thus reflecting profoundly different
clustering properties. We introduce the passive-tracer concentration
Cðr; tÞ and floating-tracer density qðr; tÞ, which are the main fields of
interest, both varying in space and evolving in time. Second, let us dis-
cuss the differences between C and q and explain the terminology. The
passive tracer is just a fluid particle and its dynamics is subject to the
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standard continuity equation for material tracers; in turn, this equation
can be restricted to describe the evolution of C. The concentration C is
conserved for each material particle. However, a compressible tracer is
not passive in the sense that it is not a fluid particle, and its density
changes as the fluid particle moves in the flow due to the velocity
divergence. The latter effect can be viewed as the compressibility of the
floating-tracer density q, hence “density” for a compressible tracer vs
“concentration” for a passive (incompressible) tracer. As we will see
below, particle motion in a random acoustic velocity field affects con-
centration and density clustering differently. Thus, we will study the
particle dynamics and their density by solving numerically the conti-
nuity equations for the concentration of particles and their density.
We do not take into account the interaction between particles.

To describe the motion of particles in a random velocity field, the
following first-order differential equation is usually used:7,22

d
dt

r tð Þ ¼ u r; tð Þ; r 0ð Þ ¼ r0: (1)

Below we will consider the two-dimensional case and set uðr; tÞ
¼ ðuðr; tÞ; vðr; tÞÞ and r ¼ ðx; yÞ.

The continuity equations governing the tracer concentration C
and the tracer density field q in the random velocity field uðr; tÞ are as
follows:25–28

@

@t
þ uðr; tÞ @

@r

� �
Cðr; tÞ ¼ 0 ; Cðr; 0Þ ¼ C0ðrÞ ; (2)

@

@t
q r; tð Þ þ @

@r
u r; tð Þq r; tð Þ ¼ 0; q r; 0ð Þ ¼ q0 rð Þ: (3)

We do not consider the influence of dynamic diffusion. Here, C0ðrÞ is
the initial distribution of the tracer concentration and q0ðrÞ is the ini-
tial distribution of the tracer density, and the stochastic properties of
Eqs. (1)–(3) are determined by the random two-dimensional velocity
field uðr; tÞ.

Evolution of each Lagrangian particle is governed by 1 and its
density and concentration are governed by the following equations:

dq t; nð Þ
dt

¼ � @u r; tð Þ
@r

q t; nð Þ; q 0; nð Þ ¼ q0 nð Þ;
dC t; nð Þ

dt
¼ 0; C 0; nð Þ ¼ C0 nð Þ;

(4)

where n is the initial position of the trajectory. The Eulerian density
and concentration fields are defined along the following trajectories:

q r; tð Þ ¼ q t; n r; tð Þð Þ; (5)

C r; tð Þ ¼ C t; n r; tð Þð Þ: (6)

A. Statistical properties of the random velocity field

We consider the motion of tracer particles inside a random
Gaussian acoustic velocity field uðr; tÞ (divuðr; tÞ 6¼ 0), statistically
homogeneous and isotropic in space, as well as stationary in time, with
correlation and spectral tensors (s ¼ t � t0; R ¼ r� r0)

huiðr; tÞujðr0; t0Þi ¼ r2uBij R; sð Þ ¼ r2u

ð
dkxdkyEij kx; ky

� �
f ðk � R; sÞ:

(7)

Here, r2u ¼ huðr; tÞ2i is the dispersion of the velocity field, and the
function7

f ðk � R; sÞ ¼ e�k kð Þs cos k � R� x kð Þsð Þ (8)

is responsible for the wave properties of the velocity field, and the indi-
ces i and j correspond to the coordinates in space. We will use the
dispersion relation for acoustic waves x ¼ xðkÞ ¼ kc, where

k ¼ ðkx; kyÞ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ jkj, and c is the speed of sound.

Exponentially decaying terms are responsible for the dissipation of
acoustic waves. We will consider the attenuation coefficient in the
form

kðkÞ ¼ kpk
2: (9)

The spectral density Eijðkx; kyÞ we choose is in the form

Eij kx; ky
� � ¼ Ei kx; ky

� �
Ej kx; ky
� � ¼ E kð Þ kikj

k2
; (10)

where Eiðkx; kyÞ ¼
ffiffiffiffiffiffiffiffiffi
EðkÞp

ki
k and E(k) will be defined below. This

spectral density corresponds to the potential velocity field.
To numerically implement such a velocity field, we consider the

following equation:7

d
dt

vðk; r; tÞ þ kðkÞvðk; r; tÞ ¼ Ejðkx; kyÞcjðk; tÞe�ik�R;

vðk; r; 0Þ ¼ voðk; rÞ;
(11)

which we modify as follows:

d
dt

vjðk; tÞ þ ðkðkÞ6 ixðkÞÞvjðk; tÞ ¼ bEjðkx; kyÞcjðk; tÞ;
vjðk; 0Þ ¼ vojðkÞEjðkx; kyÞ:

(12)

Thus, if we multiply the solution of this equation by e�ik�R we will con-
sider a wave with dissipation propagating in the direction defined by k
(or opposite direction due to the sign before xðkÞ. We will assume
that the sources cjðk; tÞ are delta-correlated stochastic functions in
time and the wave vector with statistically independent components
and initial condition vojðkÞ is delta-correlated with statistically inde-
pendent components.23,24 We will obtain a random wave field as a
solution of Eq. (12) and try to select a constant b so that it has the
desired correlation tensor.

The formal solution of Eq. (12) has the form [for the case
ðkðkÞ � ixðkÞÞ]

vjðk; tÞ ¼ vojðkÞEj kx; ky
� �

e� kðkÞ�ix kð Þð Þt

þ b
ðt
0

dhEj kx; ky
� �

cjðk; hÞe�ðkðkÞ�ixðkÞÞðt�hÞ: (13)

Let us choose constant and initial conditions to obtain the
desired correlation matrix. After multiplying by e�ik�r and e�ik0 �r0 ,
one gets
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viðk; tÞe�ik�reik
0 �r0�v jðk0; t0Þ

D E
¼ Ei kx; ky

� �
Ej k0x; k

0
y

� �
e�ik�reik

0 �r0
 
voiðkÞe� kðkÞ�ix kð Þð Þt þ b

ðt
0

dhciðk; hÞe� kðkÞ�ix kð Þð Þ t�hð Þ
!*

�
 
�vojðk0Þe� kðk0Þþix k0ð Þð Þt0 þ �b

ðt0
0

dh0�cjðk0; h0Þe� kðk0Þþix k0ð Þð Þ t0�h0ð Þ
!+

¼ Ei kx; ky
� �

Eje
�ik�rþik0 �r0 k0x; k

0
y

� � 
voðkÞ�voðk0Þe�kðkÞt� kðk0Þð Þt0eix kð Þ t�t0ð Þ
D E

þ b�b
ðt;t0
0

dhdh0ciðk; hÞ�cjðk0; h0Þe� kðkÞð Þ t�hð Þ� kðk0Þð Þ t0�h0ð Þeix kð Þ t�hð Þ�ix k0ð Þ t0�h0ð Þ
* +!

: (14)

The notations �v; �b; and �c mean the complex conjugates here and
below. We have omitted the cross terms since they will vanish during
averaging since we assume the statistical independence of the initial

condition from the integrand. Furthermore, we consider b as the deter-
ministic constant and also assume the delta correlation of voðkÞ of wave
vector components and ciðk; sÞ in wave vector and time. We obtain

viðk; tÞe�ik�reik
0 �r0�v jðk0; t0Þ

D E
¼ Ei kx; ky

� �
Ej k0x; k

0
y

� �
e�ik�reik

0 �r0
 
voiðkÞe� kðkÞ�ix kð Þð Þt þ b

ðt
0

dhciðk; hÞe� kðkÞ�ix kð Þð Þ t�hð Þ
!*

�
 
�vojðk0Þe� kðk0Þþix k0ð Þð Þt0 þ �b

ðt0
0

dh0�cjðk0; h0Þe� kðk0Þþix k0ð Þð Þ t0�h0ð Þ
!+

¼ Ei kx; ky
� �

Ej k0x; k
0
y

� �
e�ik�rþik0 �r0

 
voðkÞ�voðk0Þe�kðkÞt� kðk0Þð Þt0eix kð Þ t�t0ð Þ
D E

þ b�b
ðt;t0
0

dhdh0ciðk; hÞ�cjðk0; h0Þe� kðkÞð Þ t�hð Þ� kðk0Þð Þ t0�h0ð Þeix kð Þ t�hð Þ�ix k0ð Þ t0�h0ð Þ
* +!

: (15)

Now, using the properties of the delta function and assuming that
t0 � t, we reduce the integral to one dimension as follows:

viðk; tÞe�ik�reik
0 �r0�v jðk0; t0Þ

D E
¼ r2vdðk � k0ÞEij kx; ky

� �
e�ik�ðr�r0Þeix kð Þ t�t0ð Þ

� e�kðkÞðtþt0 Þ þ b�b
ðt0
0

dhe� kðkÞð Þ tþt0�2hð Þ

0
B@

1
CA

¼ r2vdðk � k0ÞEij kx; ky
� �

e�ik�ðr�r0Þeix kð Þ t�t0ð Þ

� e�kðkÞðtþt0Þ þ jbj2 e
� kðkÞð Þ t�t0ð Þ � e� kðkÞð Þ tþt0ð Þ

2kðkÞ

 !
: (16)

Let us choose a real constant b ¼ ffiffiffiffiffiffiffiffiffiffiffi
2kðkÞp

and get

huiðr; tÞujðr0; t0Þi ¼ r2uBij R; sð Þ

¼ r2u

ð
dkxdkyjEij kx; ky

� �j2e�kðkÞse�ik�Rþix kð Þs: (17)

Now if we take the statistically independent solutions of type (13) for
the case ðkðkÞ þ ixðkÞÞ, we obtain a correlation tensor of the form (7).

Thus, for the numerical implementation, we will consider the
spectral representation of the velocity field, including the integral rep-
resentation over time (an analogue of Duhamel’s formula), as

ujðr;tÞ¼ ruffiffiffi
2

p
ð
dkxdkyEj kx;ky

� �
e�ik�r

"
c1j ðkÞe� kðkÞ�ix kð Þð Þt

þc3j ðkÞe� kðkÞþix kð Þð Þtþ
ffiffiffiffiffiffiffiffiffiffiffi
2kðkÞ

p  ðt
0

dsc2j ðk;sÞe� kðkÞ�ix kð Þð Þ t�sð Þ

þ
ðt
0

dsc4j ðk;sÞe� kðkÞþix kð Þð Þ t�sð Þ
!#

; (18)

here j ¼ x; y. Here, we have added the indices a to indicate that
caj ðk; tÞ and caj ðkÞ are statistically independent random functions that
are delta-correlated in all their arguments, i.e.,
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D
caj ðk0; t0Þcbl ðk00; t00Þ

E
¼ dabd k0 � k00ð Þd t0 � t00ð Þ; a; b ¼ 2; 4ð Þ;D

caj ðk0Þcbl ðk00Þ
E
¼ dabd k0 � k00ð Þ; a; b ¼ 1; 3ð Þ:

(19)

Note that random sequences (generally speaking functions) are
chosen to be identical for the components x and y, therefore, there is
no djl in formula (19).

So, by generating numerically random sequences, caj ðk; tÞ, satisfy-
ing relations (19) and calculating the integrals in (18), we obtain a
numerical implementation of a random velocity field having a correla-
tion tensor of the form (7). Such a velocity field corresponds to a ran-
dom acoustic field with dissipation and has a finite correlation radius
in time.

Let us choose the spectral density Eijðkx; kyÞ corresponding to the
potential velocity field

Eij kx; ky
� � ¼ E kð Þ kikj

k2
; E kð Þ ¼ l2

4pð Þ2 exp � l2k2

2

	 

: (20)

B. Statistical topography of random fields

The convenient way to analyze the clustering effects of buoyant
tracers in compressible flows is statistical topography.17,23,24,29 Let us
introduce the following Liouville indicator function:

uðR; t; q�Þ ¼ dðqðR; tÞ � q�Þ: (21)

Then, we consider the function

Sðt; q�Þ ¼
ð
dRhðqðR; tÞ � q�Þ ¼

ð
dR
ð1
q�

dq0uðR; t; q0Þ; (22)

which is the area of regions in which the random tracer density
exceeds a given level q�, and similarly, the function

Mðt; q�Þ ¼
ð
dRqðR; tÞhðqðR; tÞ � q�Þ ¼

ð
dR
ð1
q�

dq0q0uðR; t; q0Þ;

(23)

which is the mass of tracer concentrated in these areas. Here,
hðqðR; tÞ � q�Þ is the Heaviside theta function.

Next, we take advantage of the fact that the average of the indica-
tor function is PðR; t; q�Þ ¼ hdðqðR; tÞ � q�Þi, a one-time probability
density in time and one-point in space.17,24,29 By averaging Eqs. (22)
and (23) over an ensemble of velocity field realizations, we obtain the
following expressions:

hSðt; q�Þi ¼
ð
dR
ð1
q�

dq0PðR; t; q0Þ;

hMðt; q�Þi ¼
ð
dR
ð1
q�

dq0q0PðR; t; q0Þ:
(24)

In the case of a spatially homogeneous density field qðR; tÞ, the
one-point probability density does not depend on R and expressions
in (24) are simplified as follows:

hshomðt;q�Þi ¼ hhðqðR; tÞ�q�Þi ¼ PfqðR; tÞ> q�g ¼
ð1
q�

dq0Pðt;q0Þ;

hmhomðt;q�Þi ¼
ð1
q�

dq0q0Pðt;q0Þ:

(25)

Here, shomðt; q�Þ and mhomðt; q�Þ are the specific values, i.e., referred
to as unit area.17,24

For a positive random density field, clustering conditions with
probability 1 (i.e., in almost any realization) lead to the following
asymptotic expressions:

hshomðt; q�Þi ! 0; hmhomðt; q�Þi ! 1: (26)

These expressions mean that the area of regions with a density exceed-
ing a given level tends to 0, and the tracer mass concentrated in these
regions (clusters) tends to 1.

At larger times as compared to the diffusion times, one can use
the estimates of17,24,30

hshomðt; q�Þi ¼ PfqðR; tÞ > q�g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

pq�t=s

r
e
�
1
4
t
s;

hmhomðt; q�Þi=q0 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�

pq0t=s

r
e
�
1
4
t
s:

(27)

Here, s ¼ 1=D andD is the corresponding diffusion coefficient.
Even though these estimates are valid only for a potential random

velocity field without a regular component, they can be a good refer-
ence basis for estimating the velocity and degree of clustering of the
tracer. We will compare our numerical results with these expressions.
In Refs. 7 and 22, the evolution of the tracer and a magnetic field in
random wave fields were studied. In particular, for an acoustic random
velocity field, it was shown that the Stokes drift of particles and density
clustering take place. These processes occur on different time scales,
and it has been suggested that they can be separated. However, we will
show below that this is not always possible.

In Ref. 22, an estimate of the typical realization7,31 of the tracer
density field in a random acoustic velocity field was obtained in the
form of the exponential function with the Lyapunov exponent
expressed as

�at ¼ � 1
2
Dt ¼ � 1

2
r2u
c2

ð
dkxdkyk

2 kp
k2pk

2 þ c2
E kð Þ

 !
t: (28)

Thus, this work shows that the curve of a typical realization
decays exponentially, when there is non-zero wave dissipation. Thus,
in each realization of the stochastic velocity field, the tracer must be
clustered with probability one. The clustering rate is determined by the
diffusion coefficient D, which has two asymptotics as follows:

D � kp
c2

for kp 	 cl;

D � 1
kp

for kp 
 cl:
(29)
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FIG. 1. Dependence of the mass accumulated in clusters (lower left frame) and clustered area (upper left frame) on the calculation time, the same dependencies on diffusion
time s ¼ Dt (right frame). ru ¼ 1; l ¼ 0:02 ¼ 4h. The colors of the curves correspond to different values of wave field dissipation: kp

cl ¼ 0:8—dark blue, ruby red;
kp
cl ¼ 0:5—navy blue, purple; kpcl ¼ 0:4—Kentucky green, magenta; kpcl ¼ 0:2—green, orange; and kp

cl ¼ 0:1—dodger blue, red.

FIG. 2. Dependence of the mass accumulated in clusters (lower left frame) and clustered area (upper left frame) on the calculated time, the same dependencies on diffusion
time s ¼ Dt (right frame). ru ¼ 2; l ¼ 0:02 ¼ 4h. The colors of the curves correspond to the same wave field dissipation values as in Fig. 1.
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FIG. 3. The same as Figs. 1 and 2 but for ru ¼ 4; l ¼ 0:02 ¼ 4h.

FIG. 4. The same as Figs. 1 and 2 but for ru ¼ 2; l ¼ 0:04 ¼ 8h.
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We will consider the case kp � cl in a numerical model and try to
understand whether clustering of the tracer takes place and how the
diffusion coefficient depends on dissipation. To calculate the density
dynamics and simulate a discrete analogue of the velocity field, we will
use the methods from Ref. 24.

III. NUMERICAL RESULTS

Let us consider the evolution of a tracer area with a constant den-
sity q ¼ 1 in the form of a square of 200� 200 grid cells, with a spatial
cell size of h¼ 0.005. We use the complete computational domain in
which the random acoustic field is generated with dimensions of

FIG. 5. Distribution of the tracer density (right) and concentration of tracer particles (left). ru ¼ 1; l ¼ 0:02 ¼ 4h; kp
cl ¼ 0:1. The distributions are given for the following times

(from top to bottom): Dt ¼ 2:4414; 9:7656; 19:5312.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 055123 (2024); doi: 10.1063/5.0206696 36, 055123-7

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/phf


2048 � 2048 grid cells. In each grid cell, 100 particles are evenly dis-
tributed, and the total number of particles in the spot is 4 000 000. The
time step was chosen equal to the space step Dt ¼ 0:005. We choose
the velocity scale equal to 1 and set c¼ 1. Accordingly, kp has a charac-
teristic scale ch. We will choose sufficiently large values of the dissipa-
tion coefficient so that the estimate kp

cl � 1 is valid. Note that we use
the space and time step equal to 1 when we generate a random velocity
field and then we scale it to h¼ 0.005 and Dt ¼ 0:005 to calculate par-
ticle trajectories.

Equation (1) and the equation for q from (4) are integrated in
time using the standard Euler–Ito scheme.32 Concentration does not
change along the trajectory; thus, we use the number of particles per
area as the concentration.

First of all, we analyze the characteristics of statistical topography.
Figures 1–4 show the dependencies of the area of clusters and the mass
accumulated in them. The first conclusion is that the expression
for the diffusion coefficient follows from formulas (28) and (29)
obtained in22

D ¼ r2u
c2

ð
dkxdkyk

2 kp
k2pk

2 þ c2
E kð Þ � ~D

kpr2u
c2

for kp 	 cl; (30)

and is confirmed by the numerical simulation. Here, ~D is constant of
order one. Note that expression (30) for the diffusion coefficient
remains valid for dissipation kp � cl.

The second, and rather unexpected, conclusion is that formally
the criterion for the presence of clustering (26) is not met, which at
first glance contradicts the results of the previous work.22 However, an
analysis of the spatial distribution of the tracer density and tracer
particles allows us to understand the reason for this effect. These distri-
butions, for the same parameter values as in Figs. 1–4, are shown in
Figs. 5–8.

In these figures, the left column shows the distribution of the
tracer density, and the right column shows the concentration of tracer
particles. Comparing the right and left columns shows that areas of
high particle concentration and areas of high tracer density do not
coincide. Moreover, at sufficiently long times, almost all clusters
(regions with a high tracer density occupying a very small area) are
located in areas in which there is practically no tracer. Thus, we can
conclude that the tracer transport by a random acoustic field and the
tracer clustering in this field lead to the following: the tracer is trans-
ferred to areas in which the density decreases and, accordingly, there is
very little tracer in areas where clustering occurs.

FIG. 6. Distribution of the tracer density (right) and concentration of tracer particles (left). ru ¼ 1; l ¼ 0:02 ¼ 4h; kp
cl ¼ 0:4. The distributions are given for the following times

(from top to bottom): Dt ¼ 2:4414; 4:8828.
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In Ref. 33, it has been shown that clusters exist for a finite time,
then quickly disintegrate and form again. Thus, we see that clustering
takes place, but since the tracer is transported away from the areas of
high density, in particular after the destruction of clusters, only a small
part of the tracer can be actually clustered. These remaining clusters
also have only finite densities.

For clarity, Fig. 9 shows the distributions of tracer density (red
and purple) and particle concentration (blue and black) in one figure.
We can see here that the tracer is concentrated along certain lines (we
can say that this is quasi-clustering because of only finite density), and
clusters are formed in the areas where there are very few particles.
Note that the small number of particles that remain outside the areas
of tracer concentration are almost completely contained in clusters
(regions with a high tracer density).

Thus, the result of the work7 should be clarified. The authors
used the Fokker–Plank equation to obtain the probability density of
the particle density q. This equation has two terms with two different
diffusion coefficients. One of the term corresponds to the lognormal
probability density and it means that the clustering must take place.
The second term corresponds to average particle transport (the Stokes
drift), and the probability distribution of the position of Lagrangian
particles becomes anisotropic.

In the current study, we confirm that the conditions for tracer
clustering in a random acoustic velocity field are realized. The numeri-
cally obtained diffusion coefficients have the same dependencies on
the random field parameters (dispersion, spatial correlation radius,
and dissipation) as those obtained analytically in the previous
papers.7,22 Moreover, the average transport of particles (Stokes drift)
occurs, which hinders effective clustering. However, the conclusion
that the influence of transport can be ignored is not entirely correct. In
fact, the clusters have a fairly long lifetime compared to the time of
their formation or decay.33 Thus, over several cycles of cluster forma-
tion and decay, tracer transport has a significant impact.

We believe that our results can also be useful for analyzing traffic
in megacities. This could be one direction for further research. Also,
we have plans to consider different random wave fields in the future.
For example, we can use the dispersion relations for the gravity waves
xðkÞ ¼ ffiffiffiffiffi

gk
p

or for internal waves xðkÞ ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

p
=k. In the last

case, N is Brent Weiss€al’s frequency for Rossby waves in the atmo-
sphere or ocean, and we need to consider a 3D random velocity field.

IV. CONCLUSIONS

We carried out numerical simulations of the transport and clus-
tering of the tracer in a random acoustic velocity field. The results

FIG. 7. Distribution of the tracer density (right) and concentration of tracer particles (left). ru ¼ 2; l ¼ 0:02 ¼ 4h; kp
cl ¼ 0:1. The distributions are given for the following times

(from top to bottom): Dt ¼ 9:7656; 19:5312.
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obtained in the previous papers7,22 were confirmed by a numerical
model. In particular, the diffusion coefficients obtained in these works
coincided with the numerical estimates. The effects of transport of
tracer particles and clustering of the density field were also confirmed.
However, certain new features were also identified: the areas of

concentration of tracer particles, i.e., the areas where the tracer was
predominantly transported by the random field did not coincide with
the areas in which clustering took place. As a result of this discrepancy,
although the conditions for clustering were met, only a small portion
of the tracer was clustered. Moreover, the maximum density in these

FIG. 8. Distribution of the tracer density (right) and concentration of tracer particles (left). ru ¼ 2; l ¼ 0:04 ¼ 8h; kp
cl ¼ 0:1. The distributions are given for the following times

(from top to bottom): Dt ¼ 4:883; 9:776; 19:532.
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clusters did not increase exponentially, although it reached relatively
high values. This is because the lifetime of clusters was shown to be
limited, and exponential growth was associated with the merging of
existing clusters. However, in this case, after the cluster decayed, a sig-
nificant part of the tracer moved away from the region where cluster-
ing occurred.

Thus, we showed that clustering took place and depended on the
parameters of the velocity field in accordance with the estimates from
the works.7,22 However, the effect was not global and only a portion of
the tracer was susceptible to clustering with finite density values.

Another interesting result is that the transport of tracer particles
in a random acoustic velocity field led to the concentration of tracer
particles along certain lines, which can be called quasi-clusters, since
the tracer density in these regions did not increase.
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