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ABSTRACT

This article discusses the problem of generating internal waves during explosive eruptions of underwater volcanoes. The importance and
novelty of such studies are associated with the emerging data on the observation of internal waves during a volcanic eruption in the Tonga
Archipelago in 2022 reported in Zhang and Li [“Oceanic internal waves generated by the Tongan volcano eruption,” Acta Oceanol. Sin. 41
(8), 1–4 (2022)]. Using Le M�ehaute’s parametric model originally suggested to calculate surface waves, internal waves in the ocean with a
constant buoyancy frequency are calculated. Internal waves are trains of different modes, the parameters of which were found for different
ratios between the radius of the equivalent source and the depth of the basin. Even at relatively small distances from the source (tens of km),
wave amplitudes changeover time periods consisting of several days, which confirms the possibility of delineating the tsunami source by
internal waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206121

I. INTRODUCTION

Explosive eruptions of volcanoes, underwater or located near the
shore, often generate tsunami waves. It is enough to mention the most
famous historical event of 1883, i.e., the eruption of the Krakatoa vol-
cano in Indonesia, when tsunami waves reached a height of almost
40m and killed about 36000 people in the Sunda Strait (see, for exam-
ple, Ref. 2). After leaving the strait, the waves spread throughout the
Indian Ocean; sea level fluctuations had also been noted in the Atlantic
and Pacific oceans.3,4 Since then, the number of registered tsunami
waves of volcanic origin in seas and lakes has increased significantly.
Let us note, in particular, the eruption of an underwater volcano in
Lake Karymskoye (Kamchatka, Russia) in January 1996, which pro-
duced a tsunami up to 30m high (see, for example, Ref. 5). The latest
event, the volcanic eruption in the Tonga archipelago on January 15,
2022, which aroused great interest in the world, was accompanied by
tsunami waves and sea level disturbances around the world (along

with atmospheric and ionospheric disturbances); see, for example,
Refs. 6 and 7.

The physics of a volcanic eruption is quite complex8 and is dic-
tated by the hydromechanics that control the rise of magma. Ascent is
influenced not only by the nucleation and growth of gas bubbles but
also by the rheology of the magma and its fragmentation. Depending
on the balance of different forces, a volcanic eruption can occur slowly
or quickly in an explosive manner. Tsunami waves occur during explo-
sive volcanic eruptions, and here several mechanisms can be distin-
guished: earthquakes initiated by a volcanic eruption; pyroclastic flows
from the slopes of the volcano; caldera collapse; underwater explo-
sions.9 The last two mechanisms are, to some extent, identical and
manifest themselves in the eruption of a finite mass of matter and the
appearance of a large gas bubble, which leads to the curvature of the
water surface and gives rise to the generation of tsunami waves. In this
case, due to the compressibility of seawater, strong shock waves arise,
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partially reflected from the water surface, also deforming it.10 Due to
the large nonlinearity and the presence of several interacting processes,
there is no rigorous theoretical model for the generation of tsunami
waves during the eruption of underwater volcanoes of the type devel-
oped for tsunamis of seismic origin. The most popular is Le Mehaute’s
parametric model (see the latest version in Ref. 11, which proposes a
model of the source of blast waves, which is determined by the explo-
sion energy. This model is widely used for cosmogenic tsunamis,12–14

and it was also used to interpret data from the volcanic tsunami near
Japan (Myojinsho Volcano) in 195215 and in 1996 in Lake
Karymskoye.5

Along with this, the theory also considers the classical formula-
tion of the linear problem of wave generation, which usually occurs at
a point source of mass located at depth as a model of wave generation
by an explosive volcanic eruption.16–18 Within the framework of such
a model, the determining parameters are the mass of erupted material,
the height of the underwater volcano, and the time of the eruption,
which was not taken into account in Le Mehaute’s parametric model.
The presence of several parameters makes it possible to better approxi-
mate the results of calculations to observational data, as demonstrated
by the example of the Myojinsho Volcano eruption in 1952.18 This
model should also be taken into account when describing the wave
field far away from the source when it becomes linear.

In all the works listed above, the stratification of sea waters was
neglected. Meanwhile, the analysis of satellite images obtained by the
synthetic aperture radar (SAR) of the European Space Agency’s
Sentinel-1 showed the appearance of internal waves near the volcano
after its eruption.1 The observed internal waves are not as dangerous
as tsunami surface waves; they propagate very slowly (no more than
1–3m/s), and, therefore, remain near the source for a long time, out-
lining it. As a result, additional information about the tsunami source
can be obtained.

The mechanisms for generating internal waves during the erup-
tion of underwater volcanoes can be different. The first of them is
similar to the generation of tsunami surface waves during an explo-
sion and is associated with the curvature of the interface between
layers of different densities (isopycnals). This mechanism is included
in tsunami calculations in the recent work,19 although without
emphasizing the characteristics of the internal waves that are gener-
ated. The second mechanism may be due to hot gravitational pyro-
clastic flows from the volcanic slope, playing the role of a piston in
the curvature of isopycnals. It is this mechanism (albeit without con-
firmation) that has been proposed to interpret satellite observations
of internal waves during a volcanic eruption in the Tonga archipel-
ago.1 A third mechanism for the generation of internal waves during
the transformation of long surface tsunami waves on the continental
slope is also possible. It is similar to the generation of internal waves
on the slope during the transformation of the barotropic tide20 by an
explosive volcanic eruption within the first mechanism, when caldera
collapse results in the curvature of the interface between layers of dif-
ferent densities.

Our goal is to obtain estimates of the internal waves that can
occur during an underwater volcanic eruption. For simplicity, we
assume that stratification is determined by a constant buoyancy fre-
quency. As the tsunami source, we choose the parametric Le
Mehaute’s model; it is briefly described in Sec. II. Derived formulas
within the framework of the linear theory of cylindrical waves are

given in Sec. III. The results of calculations for shallow and deep seas
are given in Sec. IV. The results obtained are summarized in the
Conclusion.

II. PARAMETRIC MODEL OF A TSUNAMI SOURCE

Based on data from numerous experiments with explosions in
water, in the works of Le Mehaute and co-workers (see the review21

and book11), a parametric tsunami source was formulated in the form
of a parabolic cavern (Fig. 1):

geðrÞ ¼ He
2

r
R

� �2

� 1; r < R;

0; r > R;

8><
>: (1)

where the typical height He and the cavern radius R depend on the
characteristics of the explosion, primarily on the energy of the explo-
sion. The dependences of the displacement amplitude and source
radius on the eruption energy can be approximated by formulas (2).
The regression formulas have the following form (Fig. 2):

He � 0:02E0:24; R � 0:04E0:3: (2)

Here, the explosion energy E is measured in joules, and the height and
radius are measured in meters. In general, the numerical coefficients in
(2) also depend on the depth of the basin and can change almost twice;
we chose average values to simplify subsequent calculations. It should
be noted that in various reports about the eruption characteristics, the
ejected substance volume (V) often appears in lieu of the explosion
energy. The following relationship between these characteristics is pro-
posed in Ref. 22:

E � 4 � 106V1:1: (3)

Thus, the parameters of the source can also be expressed through the
volume of the ejected substance.

Although these empirical formulas were derived for underwater
explosions, they have already been used to interpret data from volcanic
tsunamis in Japan (Myojinsho Volcano) in 1952 (Ref. 15) and in
Kamchatka’s Lake Karymskoye in 1996 (Ref. 5) and showed a good
agreement with the observed data.

To our knowledge, the theoretical and experimental study of
the internal wave generation during the volcano eruption has not
been done early. Therefore, the applicability of the parametric Le
Mehaute’s source to internal waves requires experimental verification.
However, the very good suitability of such a source for surface waves
gives us confidence that the same model will work for internal waves
as well.

FIG. 1. Initial cavern of the parametric source.
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III. WAVE FIELD ARISING FROM THE ERUPTION
OF AN UNDERWATER VOLCANO

A parametric source, coupled with a zero initial condition on the
displacement velocity of water particles, was used to describe the far
wave field within the framework of the linear theory of water waves.
We use it below to describe waves in a stratified sea. It is natural to
assume that the waves generated during the eruption of underwater
volcanoes are quite long and cover the entire thickness of the ocean. In
this case, the wave field in a stratified ocean can be represented by a set
of eigenmodes,

gðz; x; y; tÞ

¼
X1
n¼1

ð ð
Anðkx; kyÞUnðz; kx; kyÞ exp iðxt � kxx � kyyÞ

� �
dkxdky;

(4)

where An—spectral amplitudes, An—modal function, and x—wave
frequency determined from the boundary value problem (Sturm–
Liouville problem),

d2Un

dz2
þ k2

N2ðzÞ � x2
n

x2
n

Un ¼ 0; (5)

with zero boundary conditions on the bottom and free surface of the
basin (here, the Boussinesq approximation standard for oceanic condi-
tions and the solid lid approximation on the surface are used).23 Here,
N(z) is the buoyancy frequency (V€ais€al€a–Brent frequency), determined
through the seawater density gradient q(z),

NðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

qðzÞ
dqðzÞ
dz

s
; (6)

where g—acceleration due to gravity and the z axis is directed deep
into the liquid.

In the case of a cylindrical problem (it is characteristic of waves
during the eruption of underwater volcanoes), formula (4) is trans-
formed into

gðz; r; tÞ ¼
X1
n¼1

ð1
0

kAnðkÞUnðz; kÞJ0ðkrÞ cosðxntÞdk; (7)

where J0—zero order Bessel function. The spectral amplitude is deter-
mined through the Hankel (Bessel–Fourier) transform of the initial
disturbance

AnðkÞ ¼ 1ðh
0

U2
nðk; zÞdz

ð1
0

rJ0ðkrÞdr
ðh
0

gðz; r; 0ÞUnðz; kÞdz; (8)

where h—basin depth.
Formulas (7) and (8) make it possible to calculate the linear wave

field from any initial displacements in the source and arbitrary stratifi-
cation of the ocean. It can be assumed that during an explosive erup-
tion of an underwater volcano, all layers in the ocean shift almost
simultaneously to the same height. In this case, the function g(z, r, 0)
can be considered independent of the vertical coordinate z, and
replaced by ge(r) according to Eq. (1). As a result, we obtain a formula
for calculating spectral amplitudes,

AnðkÞ ¼

ðh
0

Unðz; kÞdz

ðh
0

U2
nðk; zÞdz

ð1
0

rgeðrÞJ0ðkrÞdr: (9)

IV. WAVES IN A SEAWITH A CONSTANT BUOYANCY
FREQUENCY (RESULTS OF THE COMPUTATIONS)

We perform specific calculations for an ocean with a constant
V€ais€al€a–Brent frequency N¼ const. In this case, boundary value prob-
lem (5) for internal waves is easily solved analytically,

UnðzÞ ¼ sinðnpz=hÞ; xnðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2k2

k2 þ ðnp=hÞ2
s

: (10)

Dispersion curves x(k) and group velocity c(k)¼ dx/dk are presented
in Fig. 3 in dimensionless variables (x/N, kh) for the three lowest
modes.

FIG. 2. The relationships between the characteristics of the parametric source and the energy of the eruption.
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It is important that the structure of modes of internal waves does
not depend on the wave number, and all integrals in (7) and (9) are
simplified. Thus, the spectral amplitudes are nonzero only for odd
modes (n¼ 2mþ 1),

AmðkÞ ¼ 4
pð2mþ 1Þ

ð1
0

rgeðrÞJ0ðkrÞdr; m ¼ 0; 1; 2;…: (11)

The integral here is exactly the same as for surface waves.11,21

Therefore, we instantly provide the final answer

AmðkÞ ¼ 4HeR2

pð2mþ 1Þ FðkRÞ; m ¼ 0; 1; 2;…; (12)

where the dimensionless spectral function is (J3 is the Bessel function
of the third order)

FðhÞ ¼ � J3ðhÞ
h

: (13)

The graph of this function is shown in Fig. 4. As we can see, the spec-
trum contains spatial frequencies determined by the effective radius of
the source kR in the range 0–10; shorter waves have small amplitudes.
The absence of a zero component in the spectrum is also explainable
due to the zero net volume displacement, which is easily verified by
calculation using Eq. (1).

The wave field itself is the sum of odd partial modes derived from
(7) and (12),

gðz; r; tÞ ¼ 4He

p

X1
m¼0

Wmðr; tÞ sin ð2mþ 1Þpz=h½ �
2mþ 1

; (14)

where

Wmðr; tÞ ¼ R2
ð1
0

kFðkRÞJ0ðkrÞ cosðxmtÞdk: (15)

It is convenient to re-scale the distance by the radius of the source
(x¼ r/R), time—by the V€ais€al€a–Brent frequency (s¼Nt), wave num-
ber by the source radius (h¼ kR), then the function W simplifies as
much as possible and depends on only one parameterG—the ratio of
the source radius to the basin depth,

Wmðx; s;PmÞ ¼
ð1
0

hFðhÞJ0ðxhÞ cosðXmsÞdh; (16)

Xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

h2 þP2
m

s
; Pm ¼ ð2mþ 1ÞpR

h
: (17)

FIG. 3. Dispersion curves x(k) and group velocity c(k) for internal waves in a medium with constant buoyancy frequency.

FIG. 4. Dimensionless spectral amplitude of internal waves in a medium with a con-
stant buoyancy frequency.
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Using formulas (14) and (16), one can calculate the wave field at
any time and at any distance from the source. However, as has been
repeatedly stated above, a parametric source was introduced in order
to exclude the source zone with complex processes in it and to be able
to calculate the far field within the framework of the linear theory. At a
large distance (x¼ r/R� 1), we use the asymptotic formula for the
Bessel function,

J0ðxhÞ �
ffiffiffiffiffiffiffiffi
2

pxh

r
cos xh� p

4

� �
; (18)

and calculate the integral (16) using the stationary phase method (see,
for example, Wong, 2001),

Wmðx; sÞ ¼ 1
2px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hcmðhÞ
jdcm=dhj

s
FðhÞ cos hx � XmðhÞs6p

4

� �
; (19)

where the dimensionless wave number h can be found from the equa-
tion for group velocity

cnðhÞ ¼ dXnðhÞ
dh

� x
s

(20)

and depends on time at a fixed distance from the source. Calculating
the group velocity from formula (17), we obtain the final expression
for the functionW,

Wmðx; sÞ ¼ 1
2px

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þP2

m

3

s
FðhÞ cos hx � XmðhÞs6p

4

� �
: (21)

As a result, we obtain the final formula for the far-field of internal
waves,

gðz;x;sÞ¼ 2Heffiffiffi
3

p
p2x

X1
m¼0

BmðhÞcos hx�XmðhÞs6p
4

� �
sin ð2mþ1Þpz=h½ �;

(22)

FIG. 5. Spatial spectral amplitudes of wave trains. The upper curve in all figures corresponds to the first mode n¼ 1 (m¼ 0); as the number increases, the curves decrease in
amplitude (curves with m¼ 0–4 are shown).
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BmðhÞ ¼
FðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

m þ h2
q
2mþ 1

; (23)

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

ms
x

� �2=3

�P2
m

s
: (24)

It should be said that the stationary phase method is not applica-
ble in the vicinity of h � 0, which is already evident from the asymp-
totic formula (18). However, in contrast to the similar problem of

excitation of tsunami waves by vertical movements of the bottom,
where this problem is emphasized,24 our spectral amplitude Bm is small
in the vicinity of small wavenumbers, so this region of the spectrum
does not affect the characteristics of internal tsunami waves.

Thus, the wave field is represented by the sum of modes (recall
that the mode number n¼ 2mþ 1), each of which propagates in the
form of a frequency-modulated pulse with its own group velocity,
decreasing in space in inverse proportion to the distance. The wave-
number spectrum of a frequency-modulated pulse is characterized by
the amplitude jBm(h)j shown in Fig. 5 for different values of the ratio
of the radius of the source to the depth of the basin R/h. Let us imme-
diately note that for all modes and magnitudes of the ratio R/h, the
maximum amplitudes are relatively long waves with values kR< 6.4
(first zero of the function J3), so the most dangerous are the first trains
of each mode. The second and subsequent trains are especially small
when the eruption occurs in a shallow sea (R> h), and then the ampli-
tude of subsequent trains decreases by more than half (Fig. 5 at the
bottom). The speed of the “long” head train of the first mode is the
highest, so it arrives first at the observation point. Then, waves of dif-
ferent modes with different frequencies arrive, interfering with each
other.

Let us study in more detail the characteristics of the leading train
of internal waves. The spectral composition of the lowest mode head
train is shown in Fig. 6. Regardless of the depth of the basin, the width
of the spectrum of the leading train is the same and equal to kR¼ 6.4.
Spectral amplitudes are sensitive to the R/h ratio and are maximum in
shallow seas.

The maximum amplitude of the train is defined as the extremum
of formula (23); it is shown in Fig. 7 as a function of the number m,
which determines the mode number.

Waves generated in shallow sea (R� h) practically do not
depend on the mode number, which is obvious from the asymptotics
of Eq. (23),

FIG. 7. Dependence of the maximum amplitude of the leading train at different R/h
on m.

FIG. 8. Dependence of the wave number of the wave of maximum amplitude in the
leading train on m.

FIG. 6. Spectral composition of the leading train of internal waves of the lowest
mode depending on the ratio of the source radius to the depth of the basin.
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Bmðh;R=h ! 1Þ � pFðhÞR
h
: (25)

Thus, in a shallow sea, almost identical (in amplitude) trains of
different modes with a time delay and different characteristic frequen-
cies will arrive at the observation point. In the deep sea, the amplitude
of the trains decreases with increasing mode number and here the low-
est mode prevails.

The wave of maximum amplitude in the leading train of each
mode has a fixed wave number Rkmax, shown in Fig. 8 depending on
m, and, consequently, a fixed wavelength proportional to the radius of
the parametric source. In shallow seas Rkmax¼ 3.6, and this value is
constant for all modes. For higher modes, the maximum occurs at
shorter wavelengths. The wave of maximum amplitude in the leading
train of each mode moves at a constant speed,

cm ¼ P2
m

P2
m þ kRð Þ2max

h i3=2 ¼ x
s
; Pm ¼ ð2mþ 1ÞpR

h
: (26)

In the case of shallow seas, as one would expect, the wave of a maxi-
mum amplitude moves at almost the maximum speed of long waves,

cm � 1
Pm

1� 3 Rkmaxð Þ2
2P2

m

" #
; (27)

or in a dimensional form,

Cgrð Þm � Nh
ð2mþ 1Þp 1� 3h2k2max

2ð2mþ 1Þ2p2

" #
: (28)

FIG. 9. Mareogram of the lowest mode (m¼ 0) at different distances from the source on the horizon z¼ h/2 in the case of deep sea (R/h¼ 0.1) in dimensionless variables.
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Here, we present a mariogram of the lowest mode (m¼ 0) at dif-
ferent distances from the source on the horizon z¼ h/2 in the case of a
deep sea (R/h¼ 0.1), constructed according to Eq. (22) in dimension-
less variables: n¼ g/He, s¼Nt, x¼ r/R (Fig. 9). On the left is a “com-
plete”mareogram containing several trains of internal waves. Its initial
part is on the right, clearly showing the time of arrival of the head
wave (tstart) and the linear character of the increase in amplitude along
the train.

In essence, mareograms of internal waves of other modes are
qualitatively similar to those shown in Fig. 9. They are shown in
Fig. 10. Naturally, the arrival time of each mode is different and is actu-
ally determined by the maximum group velocity; see formulas (27) or
(28). The difference in the velocities of the first and third modes
(m¼ 0 and m¼ 1) reaches 3; the time of arrival at the point x¼ 10 is
3.14 and 9.42, respectively. The fifth mode (m¼ 2) arrives at the obser-
vation point at the moment 15.7, i.e., five times longer than the first,
which is clearly visible in Fig. 10(b). However, the strongest visible
effect is the significantly different time scales of carrier waves and enve-
lope waves. As already mentioned, the spatial scales of wave groups are
the same and are determined by the zeros of the Bessel function, but
the time scales change significantly due to the strong difference in
group velocities. This can already be seen from Eq. (10) and Fig. 3—
the group velocity of the highest mode may be higher than the velocity
of the lowest mode.

Thus, in Fig. 10, plotted for x¼ 10, the leading train of the third
mode (green line) ends first, the leading train of the second mode
(blue line) is more extended, while the leading train of the first mode
(red line) has not reached its maximum yet. Dimensionless timescale
(4000) in Fig. 10 corresponds to approximately 700 V€ais€al€a–Brent
periods. In the case of, for example, a V€ais€al€a–Brent period of 5min,
we get approximately 60 h. Thus, internal waves, even at short distan-
ces from the source, exist for quite a long time, which is important for
delineating the tsunami source.

V. CONCLUSION

The first report on the observation of internal waves after a volca-
nic eruption in the Tonga archipelago on January 15, 2022 served as
the starting point for our theoretical analysis of internal waves gener-
ated during underwater volcanic eruptions. The Le Mehaute’s para-
bolic cavern, which is actively used in calculating surface tsunami
waves during explosions in water, eruptions of underwater volcanoes,
and meteorite falls into water, was adopted as the source of tsunami
waves. It is assumed that the isopycnals above the underwater volcano
are curved in the same way as the water surface. Within the framework
of linear theory, the wave field in the ocean with a constant buoyancy
frequency is calculated. Calculations have shown the generation of a
multimode field of internal waves propagating in the form of trains.
The most intense are the leading trains of each mode. The arrival time
of waves of different modes and the wave of the lowest mode always
arrives first. The characteristic frequencies of individual waves in trains
increase with the mode number. Due to the entanglement of the group
velocity curves of different modes, there is a complex interference of
groups of waves of different modes. It should be noted that over time,
at the observation point, it is the trains of higher modes that may turn
out to be more intense than the leading train of the lowest mode. The
duration of trains of internal waves reaches thousands of V€ais€al€a–
Brent periods, so that even at relatively small distances from the source
of tens of kilometers, internal waves remain noticeable for several
trains. This provides grounds for delineating the source of an under-
water eruption using contact or remote measurements of internal
waves.
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