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Abstract—Features of Rayleigh scattering by a solid particle at a small distance compared to the wavelength
from an impenetrable plane boundary are revealed. The choice of the Green’s function in the integral repre-
sentation of the Helmholtz equation makes it possible to reduce integration only over the particle surface and
eliminate the contribution of the interface surface. When expanding over a small wave parameter, a well-
known approach is used, making it possible to represent the solution of a given order as the sum of a potential
function and a component expressed in terms of lower-order approximations. The potential component is
found, expressed in terms of solid irregular harmonics centered on the particle and its mirror image. The
vibrational velocity of the center of a particle and the scattering amplitude are determined. In the lowest order
of the wavenumber, the scattering amplitude is expressed in terms of the monopole and dipole components.
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INTRODUCTION
This study is a continuation of [1, 2], in which the

authors obtained an analytical description of the
dynamics of a gas inclusion at a small distance from
the interface between two contacting media. In con-
trast to a bubble, the inertial properties of the particle
material cannot be neglected, and the approach used
in [1, 2] requires modification. Sound scattering by an
object at a short distance from a boundary has been a
subject of research for several decades. Interest in this
problem, stemming from hydroacoustics problems,
involves scattering of high-frequency signals [3–6]. At
the same time, with the advancement of acoustic
methods for manipulating objects in biofabrication,
acoustofluidics, and ultrasonic cleaning problems [7–
10], as a rule, the sizes of objects are small compared
to the wavelength.

This study is aimed at developing acoustic methods
for manipulating small objects in the presence of
bounding surfaces, in particular, finding the radiation
pressure force under such conditions. The study is
based on recent results [11–14]. The necessary first
step is to find a first approximation, i.e., solve the lin-
ear problem of scattering by a particle at a small dis-
tance from the interface. The emphasis is on obtaining
an approximate analytical description that offers a
visual interpretation of the results and using analytical
expressions in analyzing nonlinear effects.

FORMULATION OF THE PROBLEM

An incident wave  is scattered by a target consist-
ing of a hard particle with a surface Sp, located above
the lower half-space with an impenetrable boundary
Sg (z = 0). The particle radius Rp and distance from the
particle center to the boundary h are much smaller
than the wavelength. The geometry of the problem is
illustrated in Fig. 1.

Let us introduce notation for the point 
and its mirror image . We consider the
function , which describes the solution to the prob-
lem of scattering by the boundary in the absence of a
particle .

The scattered field ϕs satisfies the Helmholtz equa-
tion and the following boundary conditions:

(1)

Here u is the velocity of the particle’s center of mass,
and n is the external normal with respect to both the
particle and the lower medium.

The Helmholtz equation can be written in integral
form:
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Fig. 1. Geometry of problem: incident wave propagates in direction of wave vector  and is scattered by
particle with radius  located at distance h from boundary of impermeable medium. A mirror particle is used to describe inter-
action with boundary. Spherical coordinate systems centered on particle and its mirror image 

 are used in constructing potential solution to boundary value problem.
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where  is the Green’s function. Selecting a
Green’s function that satisfies the boundary condition
on Sg (z = 0),

leads to the fact that integration in formula (2) is done
only over the particle surface.

Because  also satisfies this integral equation,

for the total field , we have
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When finding the solution in the long-wavelength
approximation, we use the technique proposed in [15].
Let us present the low-frequency expansion of the
quantities entering into formula (3) as

(4)

If  is a plane wave ϕin(r) =
 propagating in the direction

, then  = .
In a spherical coordinate system associated with the
center of the particle 

.

Substituting the expansion of the Green’s function,
we obtain equations for the sought quantities:
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(5)

This equation expresses the nth term of the expan-

sion in all previous ones, including the nth. However,

the advantage of this notation is that the term on the

right-hand side containing  is a potential function:

a solution to the Laplace equation [15]. Therefore, the

sought solution can be represented as

(6)

Thus, if we know  for m = 0.1, …(n – 1), then

finding  reduces to solving the following bound-

ary value problem for :
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The first terms of the expansion are as follows:

(8)

The description of Rayleigh scattering by a solid

particle near the interface is thus reduced to solving

the following boundary value problem:
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(9)

The direction of the x axis can be chosen along the

projection of the wave vector, so that 

CONSTRUCTING THE SOLUTION

Following [16], we seek a solution in the form of

the sum of the potentials centered on the particle and

its mirror image:

(10)

Here Ylm are spherical functions, Ilm are irregular spa-

tial harmonics. In order to satisfy the boundary condi-

tions at z = 0, the following conditions must be met:

blm = (–1)l + m alm.

To satisfy boundary conditions on the particle sur-

face, it is necessary to transform solid harmonics cen-

tered on the mirror image to coordinates centered on

the particle. The addition theorem [17] provides this

relationship:
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The first approximation potential takes the form
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tution of (12) into kinematic boundary condition (9)

and projecting it onto  yield

(13)

The appearance of the right-hand side determines

the presence only of M = ± 1.

The power-law dependence of the coefficients on

parameter  makes it possible, following

[16], to seek a solution in the form

(14)

Equating coefficients with the same powers ε, we

obtain
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tially recurrent formulas that make it possible to find

the solution in explicit form:
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The accuracy in representing the solution is deter-

mined by the power of parameter .

Thus, an accuracy of two orders of magnitude is

ensured by taking into account terms up to 

With this accuracy, the solution has the form
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(17)

The next step is to find the vibrational velocity of

motion of the center of the particle.

PARTICLE VIBRATIONAL VELOCITY

The velocity of the center of the particle is deter-

mined from the condition of the balance of inertial

forces and pressure acting on the surface of the parti-

cle, which in the approximation linear in the wave-

number is reduced to

(18)

where ρp is the particle density and ρw is the density of

liquid. In the linear approximation, a particle can only
oscillate parallel to the boundary surface, along the
direction of the incident wave. The condition of
impermeability of the boundary leads to vanishing of

the linear (for parameter ) normal velocity

component. The normal component appears when
taking into account the next order of perturbation the-

[ ]

[ ]

π= − − θ ϕ +

    × α + α         

    π= θ ϕ − +     ×     

21 in 1

4 7

23 26

4 7

in 1

1 2
2 sin

3 3

2 2

2 1
2 sin ,

3 5 2 2 2

m x p

p p

p p
m x p

a u R

R R
h h

R R
u R

h h

[ ]

[ ]

π= − − θ ϕ +

    × α + α         

π= θ ϕ −

    × − −         

31 in 1

5 8

33 36

in 1

5 8

1 2
2 sin

4 3

2 2

9 2
2 sin

8 3

2 7
,

7 2 13 2

m x p

p p

m x p

p p

a u R

R R
h h

u R

R R
h h

[ ]

[ ]

[ ]

[ ]

 π= − − θ ϕ + α  
 

 π= θ ϕ −  
 

 π= − − θ ϕ + α  
 

 π ×= − θ ϕ −  ×  

6

p

41 in 1 p 43

6

p

in 1

7

p

51 in 1 p 53

7

p

in 1 p

1 2
2 sin

5 3 2

4
2 sin ,

3 5 2

1 2
2 sin

6 3 2

5 2 5
2 sin .

4 3 11 2

m x

m x p

m x

m x

R
a u R

h
R

u R
h

R
a u R

h
R

u R
h

( )

π
ρ = −

π
ρ = ρ + φ





p

p

3

p

3

p

p 1 1 1

4
' ',

3

4
( ') ( ') ' ',

3

p

S

w
S

R d p dS
dt

R
F dS

u n

u r r n

p 1kR !
ACOUSTICAL PHYSICS  Vol. 70  No. 1  2024
ory for parameter . Calculating the surface

integral results in the following expression:

(19)

Here,  is the velocity induced by waves
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particle.
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asymptotics for the Green’s function

  we

obtain

(20)

Substituting into this expression the low-frequency

expansion for potential (4) and the components of the

Green’s function, we obtain

(21)

The first term of expansion l = 1, m = 1 makes no

contribution. For second-order terms (l = 2), we have

(22)

Calculation of the individual terms entering into

this expression leads to the following results:

(23)
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compressibility of the medium surrounding the parti-

cle (in the second-order for the wave number) caused

by the incident field. When describing this contribu-
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the particle material, which will lead to the appearance

of the factor .
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with the vibrational velocity of the particle gives

(24)

This contribution is due to the dipole source at the

center of the particle, which takes into account vibra-

tional displacements of the center. However, since the

relative velocity (relative to the medium) is important

for radiation, the sum with the term below has physical

meaning:

(25)

Here,  This term is associ-
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which takes into account the vibrational displace-

ments of the medium caused by the incident wave.
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Calculation of the contribution associated with the scattered field is the most cumbersome:

(26)

When calculating the contribution , we make

use of the fact that

Summing the contributions of individual terms, we

obtain

(27)
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source does not depend on the distance to the bound-

ary only in the considered lowest order of parameter
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integral over the particle surface of a bilinear combina-

tion of solutions to a linear problem.

CONCLUSIONS

An analytical description of Rayleigh scattering is

given for a rigid particle near an impenetrable bound-

ary. The potential near a particle is described by the

sum of the multipoles centered on the particle and its

mirror image. The intensity of the multipoles is deter-

mined by the ratio of the particle radius to the distance

to the interface surface. The scattering amplitude,

which characterizes the far field, has the same depen-

dence on the wavenumber as for scattering by a free

particle and consists of the contributions from the

monopole and dipole components. Only the dipole

component depends on the location of the particle.

The vibrational velocity of the center of the particle

depends on the distance to the boundary by means of

the effective inertial mass of the f luid.
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