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Rayleigh scattering from a spherical object located near a planar rigid boundary at distances smaller
than the wavelength is calculated. Low frequency analysis reduces a scattering problem to a sequence
of potential problems. An analytical solution based on expansion in spherical solid harmonics and
the use of addition theorem is presented. Analytical perturbation approach is validated by com-
parison with numerical calculations. The velocity of the center of the particle and the scattering
amplitude are determined. In the lowest order in wavenumber, the scattering amplitude is expressed
in terms of the monopole and dipole components. In contrast to the behavior of a bubble, under the
same conditions, dipole oscillations of the particle in the direction normal to the boundary are not
excited and the monopole component of the scattering amplitude does not depend on the location
of the particle relative to the boundary.
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1. Introduction

The scattering of an acoustic wave by an object located near bounding interfaces has been

a subject of active research for decades. The applications are diverse, including: underwa-

ter acoustics, acoustical oceanography, medical, and industrial ultrasound. In problems of

underwater acoustics, the dimensions of the object usually exceed the spatial scale of the

probing signal.1–5 At the same time, in applications that use acoustic methods for manipu-

lating objects6,7 and ultrasonic cleaning,8 as a rule, the sizes of particles are small compared

to the wavelength.

The scattering of an acoustic wave by an object whose dimensions are small in compari-

son with the wavelength is referred to as Rayleigh scattering.9 The presence of the bounding

interface has a considerable effect on the way in which the particle scatters an incident field.

To gain an understanding of how the object-interface interaction affects the scattering am-

plitude at low frequencies a number of different models are treated. The scattering of a plane
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sound wave by a sphere near a hard or soft screen was investigated in Ref. 1,2. This problem

was solved by introducing imaginary sources and was reduced to describing scattering by

two spheres. The use of bispherical coordinates made it possible to obtain an analytical

description of Rayleigh scattering by gas bubbles near the soft10 and rigid boundaries.11

Special approaches are required to analyze the situation when the wavelength exceeds one

of the dimensions of the object, but is small compared to other object sizes.12

If the screen is neither acoustically hard nor acoustically soft, the problem cannot be

reduced to scattering by two spheres and other methods must be used. The solution can be

obtained by applying the integral Helmholtz equation, in which the field of a point source in

a half-space with an elastic boundary is used as the Green’s function.3 The diffraction field

is presented in the form of an expansion in spherical harmonics, and the coefficients of this

expansion are determined as solutions of algebraic systems of equations. The possibility of

finding an analytical solution to these equations was demonstrated in Refs. 13,14 for the

limiting case of Rayleigh scattering by a gas bubble near an elastic boundary.

Acoustic radiation pressure offers a means of manipulating particles within a fluid. For

Rayleigh scattering15 and low contrast particles,16 the radiation pressure can be described

analytically. In recent years, there have been also analyses devoted specifically to the acoustic

radiation force on a particle located near an interface.17–20 Approximate numerical solutions

for the infinite linear system have been obtained by truncating the spherical wave expansion

at a finite number in these studies.17,18,20 In addition, a finite element model was also

employed.19,20

The linear low-frequency scattering solution developed in the present work for a penetra-

ble (fluid) sphere near a rigid boundary is based on the analysis pertaining to bubble11,13,14

and rigid sphere.21 The emphasis is on obtaining an approximate analytical description that

allows one to give a physical interpretation of the results obtained and use analytical expres-

sions in the analysis of nonlinear effects. Following Dassios,22 low frequency analysis is used

to reduce a scattering problem to a sequence of potential problems. In the current study,

more realistic (kinematic and dynamic) boundary conditions on the particle surface were

used compared to the Dirichlet and Neumann conditions used in the Ref. 22. The method of

the recursive relations derived by Doinikov23 has been used for obtaining approximate solu-

tions. Numerical calculations validate obtained analytical formulas. As applications of the

obtained results, the oscillatory velocity of the particle center and the scattering amplitude

are determined.

2. Formulation of the Problem

The incident wave, defined by the velocity potential ϕin, scatters on a penetrable (fluid)

sphere with a surface Sp located in the upper half-space V+ with an impenetrable lower

boundary Sg (z = 0). The sphere radius Rp and the distance from the particle center to

the boundary h are much smaller than the wavelength. The geometry of the problem is

illustrated in Fig. 1.

Let us introduce notation for a point r = (x, y, z) and its mirror image ri = (x, y,−z).
Consider the function ϕ0(r) that describes the solution of the scattering problem in the
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Fig. 1. Illustration of the geometry of the problem: an incident wave (4) propagates in the direction of the
wave vector k/k = (sin θin, 0, cos θin) and scatters on a particle of radius Rp (1) located at a distance h from
the boundary of an impenetrable medium (3). The mirror particle (2) is used to describe the interaction
with the boundary. Spherical coordinate systems centered on the particle r1 = (r1, θ1, α) and its mirror
image (2) r2 = (r2, θ2, α), r2 = r1 + 2hez are used to construct a potential solution to the boundary value
problem.

absence of the particle ϕ0(r) = ϕin(r) +ϕin(ri) (the incident (4) and reflected (5) waves in

Fig. 1).

It is required to determine the scattered field ϕs in the upper half-space and the field

inside the particle ϕtr, which satisfy the following equations and boundary conditions

∇2ϕs(r) + k2ϕs(r) = 0, r ∈ V+, ϕT = ϕ0 + ϕs,

(n · ∇)ϕT = (n · ∇)ϕtr, ϕs = (ρp/ρ0)ϕ
tr, r ∈ Sp,

∇2ϕtr(r) + k2η2ϕtr(r) = 0, r ∈ Vp, (n′ · ∇)ϕs = 0, r ∈ Sg, (1)

here n and n′ are the outward normals with respect to the particle and the lower medium,

Vp is the volume of the particle, η = c0/cp, c0 and cp are the speeds of sound in the medium

and the material of the particle, ρ0 and ρp are the densities of the medium and the particle,

ϕT is the total field.

The Helmholtz equation in the upper half-space can be written in the integral form

ϕs(r) =
1

4π

∫
Sp+Sg

{
ϕs(r′)

∂G(r, r′)

∂n′
−G(r, r′)

∂ϕs(r′)

∂n′

}
dS′, (2)
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where G(r, r′) is the Green’s function. The choice of the Green’s function satisfying the

boundary condition on Sg (z = 0),

G(r, r′) =
eikR

R
+
eikRi

Ri
, R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2

Ri =
√

(x− x′)2 + (y − y′)2 + (z + z′)2, (3)

leads to the fact that the integration in Eq.(2) is carried out only over the surface of the

particle.

Since ϕ0 also satisfies this integral equation, then for the total field ϕT = ϕ0 + ϕs we

have:

ϕT (r) = ϕ0(r) +
1

4π

∫
Sp

{
ϕT (r′)

∂

∂n′

[
eikR

R
+
eikRi

Ri

]
−
[
eikR

R
+
eikRi

Ri

]
∂ϕT (r′)

∂n′

}
dS′. (4)

The integral representation for the field inside the particle is written as

ϕtr(r) =
1

4π

∫
Sp

{
ϕtr(r′)

∂

∂n′

(
eikηR

R

)
− eikηR

R

∂ϕtr(r′)

∂n′

}
dS′. (5)

When finding a solution in the long-wavelength approximation, we will use the technique

proposed in Ref. 22.

Let us represent the low-frequency expansion of the quantities included in the Eqs.(4–5)

in the form:

ϕ0(r) =
∞∑
n=0

(ikRp)
n

n!
ϕ0n(r), ϕs(r) =

∞∑
n=0

(ikRp)
n

n!
ϕsn(r), ϕtr(r) =

∞∑
n=0

(ikRp)
n

n!
ϕtrn (r). (6)

If ϕin(r) is a plane wave ϕin(r) = ϕm exp [i(k · r)− iωt] propagating in the direction ek =

k/k, then ϕ0n(r)/ϕm = [(ek · r)/Rp]
n+[(ek · ri)/Rp]n. In a spherical coordinate system as-

sociated with the center of the particle we have ek = (sin θin cosαin, sin θin sinαin, cos θin).

Substituting the expansion of the Green’s function, we obtain equations for the required

quantities

ϕTn (r) = ϕ0n(r) +
1

4π

n∑
l=0

(
n

l

)
1

Rlp

∫
Sp

{
ϕTn−l(r

′)
∂

∂n′

[
Rl−1 +Rl−1i

]
−
[
Rl−1 +Rl−1i

] ∂ϕTn−l(r′)
∂n′

}
dS′. (7)

This equation expresses the nth expansion term in terms of all the previous ones, including

the nth one. However, the advantage of this notation is that the term containing on the right

side ϕTn (r′), ∂ϕTn (r′)/∂n′ is a potential function – the solution of the Laplace equation.22
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Therefore, the desired solution can be represented as

ϕTn (r) = Fn(r) + φn(r),

Fn(r) = ϕ0n(r) +
1

4π

n∑
l=1

(
n

l

)
1

Rlp

∫
Sp

{
ϕTn−l(r

′)
∂

∂n′

[
Rl−1 +Rl−1i

]
−
[
Rl−1 +Rl−1i

] ∂ϕTn−l(r′)
∂n′

}
dS′,

φn(r) =
1

4π

1

Rlp

∫
Sp

{
ϕTn (r′)

∂

∂n′
[
R−1 +R−1i

]
−
[
R−1 +R−1i

] ∂ϕTn (r′)

∂n′

}
dS′. (8)

For the solution inside the particle, we have:

ϕtrn (r) = F trn (r) + φtrn (r),

F trn (r) =
1

4π

n∑
l=1

(
n

l

)
ηl

Rlp

∫
Sp

{
ϕtrn−l(r

′)
∂Rl−1

∂n′
−Rl−1

∂ϕtrn−l(r
′)

∂n′

}
dS′,

φtrn (r) =
1

4π

ηl

Rlp

∫
Sp

{
ϕtrn (r′)

∂

∂n′
R−1 −R−1∂ϕ

tr
n (r′)

∂n′

}
dS′. (9)

Thus, if we know φTm(r) for m = 0, 1, ...(n − 1), then finding it is reduced to solving the

following boundary value problem for φn(r) and φtrn (r):

∇2φn(r) = 0, r ∈ V+, ∇2φtrn (r) = 0, r ∈ Vp,
∂φn
∂n′

= 0, r′ ∈ Sg,

∂(φn + Fn)

∂n′
=
∂(φtrn + F trn )

∂n′
, Fn(r) + φn(r) = (ρp/ρ0)

[
F trn (r) + φtrn (r)

]
, r ∈ Sp. (10)

The first expansion terms have the following form:

F0 = ϕ0 = 2ϕm, φ0(r) = 0, ϕT0 (r) = F0 + φ0 = 2ϕm, F
tr
0 = 0, φtr0 = (ρ0/ρp) 2ϕm,

F1 = ϕ01 = 2ϕm [sin θ sin θin cos(α− αin)(r/Rp) + cos θin(h/Rp)] , F
tr
1 = 0. (11)

The description of Rayleigh scattering by a penetrating particle located near the interface

reduces in the lowest order to solving the boundary value problem (10) with the following

form of boundary conditions on the particle surface:

∂φ1
∂r

∣∣∣∣
r=Rp

+ 2

(
ϕm
Rp

)
sin θ sin θin cos(α− αin) =

∂φtr1
∂r

∣∣∣∣
r=Rp

,

φ1(Rp) + 2ϕm sin θ sin θin cos(α− αin) = (ρp/ρ0)φ
tr
1 (Rp). (12)

The direction of the x-axis can be chosen along the projection of the wave vector, so that

αin = 0.
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3. Computation of the First order Solution

Following Doinikov,23 we are looking for a solution (outside the particle) in the form of a

sum of potentials centered on the particle and its mirror image

φ1 =

∞∑
l=0

l∑
m=−l

[
almR

l+1
p Ilm(r1) + blmR

l+1
p Ilm(r2)

]
, Ilm(r) =

√
4π

2l + 1

Ylm(θ, α)

rl+1
, (13)

here Ylm are spherical functions, Ilm are irregular solid harmonics,24 r2 = r1 + 2hez. In

order to satisfy the boundary conditions at z = 0, it is necessary to fulfill the conditions

blm = (−1)l+malm.

To fulfill the boundary conditions on the surface of the particle, it is necessary to trans-

form the spatial harmonics centered on the mirror image to the coordinates centered on the

particle. The addition theorems25 provide this connection.

Ilm(r1+2hez) =
∞∑

λ=|m|

(−1)λ+m
√

4π

2λ+ 1

√
(l + λ)!(l + λ)!

(l +m)!(l −m)!(λ+m)!(λ−m)!

rλYlm(θ, α)

2hλ+l+1
.(14)

The potential of the first approximation for the field outside the particle then takes the

form

φ1 =
∞∑
l=0

l∑
m=−l

alm

[(
Rp
r1

)l+1

Ylm(θ1, α) +
∞∑

λ=|m|

(−1)λ+m
√

2l + 1

2λ+ 1

×

√
(l + λ)!(l + λ)!

(l +m)!(l −m)!(λ+m)!(λ−m)!

rλRl+1
p

(2h)λ+l+1
Yλm(θ1, α)

]
, (15)

where we have kept the notation alm for the renormalized expansion coefficients

alm
√

4π/(2l + 1)→ alm
The potential of the first approximation inside the particle is described by the following

expression:

φtr1 =
∞∑
l=0

l∑
m=−l

clm

(
r1
Rp

)l
Ylm(θ1, α). (16)

Substituting (15) and (16) into boundary conditions (12) and projecting onto Y ∗LM gives

aLM −
L(ρp − ρ0)

(L+ 1)ρp + Lρ0

∞∑
l=|M |

alM (−1)l+L
√

2l + 1

2L+ 1

√
(l + L)!(l + L)!

(l +m)!(l −m)!(L+m)!(L−m)!

×
(
Rp
2h

)L+l+1

= −2ϕm

√
2π

3

(ρp − ρ0)
2ρp + ρ0

sin θinδL1 (δM1 − δM−1) , (17)

The form of the right-hand side of (17) determines the presence of only the following com-

ponents M = ±1.
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The power-law dependence of the coefficients on the parameter ε = (Rp/2h) makes it

possible, following Doinikov,23 to seek a solution in the form

aLM = ϕ0

√
2π

3

(ρp − ρ0)
2ρp + ρ0

sin θin

(
Rp
2h

)L−1 ∞∑
k=0

α
(1)
Lk

(
Rp
2h

)k
, M = 1,

∞∑
k=0

α
(1)
Lk

(
Rp
2h

)k
− L(ρp − ρ0)

(L+ 1)ρp + Lρ0

∞∑
l=1

(−1)l+L
√

2l + 1

2L+ 1

×

√
(l + L)!(l + L)!

(l + 1)!(l − 1)!(L+ 1)!(L− 1)!

∞∑
m=0

α
(1)
lk

(
Rp
2h

)2l+m+1

= −δL1. (18)

Equating the coefficients at the same powers ε, we get:

α
(1)
Lk

(
Rp

(2h)

)k
− L(ρp − ρ0)

(L+ 1)ρp + Lρ0

∞∑
l=1

(−1)l+L
√

2l + 1

2L+ 1

×

√
(l + L)!(l + L)!

(l + 1)!(l − 1)!(L+ 1)!(L− 1)!
α
(1)
l(k−2l−1) = −δL1δk0. (19)

As noted in Ref. 23, the resulting relations are, in essence, recursive formulas that allow

one to find the solution in an explicit form:

α
(1)
10 = −1, α

(1)
L0 = 0, (L = 2, 3, ...), α

(1)
L1 = 0, α

(1)
L2 = 0, α

(1)
0k = 0, (k = 0, 1, 2, 3, ...),

α
(1)
L3 =

L(ρp − ρ0)
(L+ 1)ρp + Lρ0

∞∑
l=1

(−1)l+L
√

2l + 1

2L+ 1

√
(l + L)!(l + L)!

(l + 1)!(l − 1)!(L+ 1)!(L− 1)!
α
(1)
l(3−2l−1)

=
L(ρp − ρ0)

(L+ 1)ρp + Lρ0
(−1)1+L

√
3

2L+ 1

√
(1 + L)!

2(L− 1)!
α
(1)
10

=
L(ρp − ρ0)

(L+ 1)ρp + Lρ0
(−1)L

√
3

2L+ 1

√
(1 + L)!

2(L− 1)!
,

α
(1)
13 = −(ρp − ρ0)

2ρp + ρ0
, α

(1)
23 =

6√
5

(ρp − ρ0)
3ρp + 2ρ0

, α
(1)
33 = −9

√
2

7

(ρp − ρ0)
4ρp + 3ρ0

,

α
(1)
43 = 4

√
2 · 5

3

(ρp − ρ0)
5ρp + 4ρ0

, α
(1)
53 = −15

√
5

11

(ρp − ρ0)
6ρp + 5ρ0

,

α
(1)
L6 =

L(ρp − ρ0)
(L+ 1)ρp + Lρ0

∞∑
l=1

(−1)l+L
√

2l + 1

2L+ 1

√
(l + L)!(l + L)!

(l + 1)!(l − 1)!(L+ 1)!(L− 1)!
α
(1)
l(6−2l−1)

= (−1)1+L
L(ρp − ρ0)

(L+ 1)ρp + Lρ0

√
3

2L+ 1

√
(1 + L)!

2(L− 1)!
α
(1)
13 = −α(1)

L3α
(1)
13 ,

α
(1)
L7 = 0. (20)
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The accuracy of the representation of the solution is determined by the degree of the

parameter ε = (Rp/2h) < 1/2, so two orders of magnitude accuracy is ensured by taking

into account the terms up to ε7 ≈ 0.01. With this accuracy, the solution has the form:

φ1 =
5∑
l=1

al1

{(
Rp
r1

)l+1

[Yl1(θ1, α) + Y ∗l1(θ1, α)] + (−1)l+1

(
Rp
r2

)l+1

[Yl1(θ2, α) + Y ∗l1(θ2, α)]

}
,

a11 =

√
2π

3
ϕ0

(ρp − ρ0)
(2ρp + ρ0)

sin θin

[
α
(1)
10 + α

(1)
13

(
Rp
2h

)3

+ α
(1)
16

(
Rp
2h

)6
]

= −
√

2π

3
ϕ0

(ρp − ρ0)
(2ρp + ρ0)

sin θin

[
1 +

(ρp − ρ0)
(2ρp + ρ0)

(
Rp
2h

)3

+
(ρp − ρ0)2

(2ρp + ρ0)2

(
Rp
2h

)6
]
,

a21 =

√
2π

3
ϕ0

(ρp − ρ0)
2ρp + ρ0

sin θin

[
α
(1)
23

(
Rp
2h

)4

+ α
(1)
26

(
Rp
2h

)7
]

=

√
2π

3 · 5
6ϕ0

(ρp − ρ0)
2ρp + ρ0

sin θin

[
(ρp − ρ0)

(3ρp + 2ρ0)

(
Rp
2h

)4

+
(ρp − ρ0)2

(2ρp + ρ0)(3ρp + 2ρ0)

(
Rp
2h

)7
]
,

a31 =

√
2π

3
ϕ0

(ρp − ρ0)
(2ρp + ρ0)

sin θinα
(1)
33

(
Rp
2h

)5

=

√
4π

3 · 7
9ϕ0 sin θin

× (ρp − ρ0)2

(2ρp + ρ0)(4ρp + 3ρ0)

(
Rp
2h

)5

,

a41 =

√
2π

3
ϕ0

(ρp − ρ0)
(2ρp + ρ0)

sin θinα
(1)
43

(
Rp
2h

)6

=
√

5π
8

3
ϕ0 sin θin

(ρp − ρ0)2

(2ρp + ρ0)(5ρp + 4ρ0)

(
Rp
2h

)6

,

a51 =

√
2π

3
ϕ0

(ρp − ρ0)
(2ρp + ρ0)

sin θinα
(1)
53

(
Rp
2h

)7

=

√
2π · 5

11
15ϕ0 sin θin

(ρp − ρ0)2

(2ρp + ρ0)(6ρp + 5ρ0)

(
Rp
2h

)7

. (21)

When deriving Eq.(21), we used the fact that al−1 = −al1 and Yl−1 = −Y ∗l1.
An approximate numerical solution for the infinite system (17) is obtained by truncating

the spherical harmonic expansion at a finite number N such that L = 1, .., N . As noted in

Ref. 20, when carrying out similar calculations, the method used turns out to be effective.

Thus, at N = 10, the accuracy exceeds 10−3 . We present a solution for aL1 only, since

aL−1 is simply related to aL1: aL−1 = −aL1. Moreover, in order to make it convenient to

compare with the results of analytical consideration, numerical calculations are performed

for normalized values AL: aL1 = ϕ0

√
2π
3

(ρp−ρ0)
2ρp+ρ0

sin θinAL.

Figure 2(a,b) illustrates the dependence of the normalized amplitudes as a function

of the distance from the particle center to the boundary h/Rp for the first two modes
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Fig. 2. The variations in the normalized amplitude of the first A1 and the second A2 modes with the
dimensionless distance h/Rp are shown in panel (a) and (b), correspondingly. Numerical calculations are
indicated by the solid lines. The dashed lines show the contribution of the analytical approach given by (17).

L = 1, 2. Namely, for these modes, the influence of the boundary is most significant. The

smallness of the values of the relative amplitudes of the nondominant modes complicates

their graphical representation. The results, presented in Fig. 2(a,b), have been obtained for

typical parameters of media20 (ρp/ρ0 = 2).

Comparison of the plots presented in Fig. 2(a,b) shows that the perturbation (analytical)

approach quite satisfactory conveys the behavior of the amplitudes, in particular, their

variation with the distance.

We ignore the effect of the viscosity, assuming that the thickness of the viscous layer is

small compared to the particle radius. However, near the boundary, this condition should

be tightened, and the gap between the particle wall and the boundary should be greater

than the thickness of the boundary layer. To avoid violating these constraints, we performed

numerical calculations under the condition that the size of the gap exceeds one-tenth of the

particle radius.

4. Vibrational Velocity of a Particle

The velocity of the particle center is determined from the condition of the balance of inertial

forces and pressure acting on the surface of the particle, which, in the approximation linear

in the wavenumber, reduces to

ρp
4πR3

p

3

du

dt
= −

∫
Sp

pn′dS′, ρp
4πR3

p

3
u = ρ0(ikRp)

∫
Sp

(
F1(r

′) + φ1(r
′)
)
n′dS′. (22)
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The calculation of the surface integral leads to the following expressions:

ρp
4πR3

p

3
ux = ρ0(ik)R3

p

∫ π

0

∫ 2π

0
sin θ′dθ′dα′

(
F1(θ

′, α′) + φ1(θ
′, α′)

)
sin θ′ cosα′,

ρ0(ik)R3
p

∫ π

0

∫ 2π

0
sin θ′dθ′dα′F1(θ

′, α′) sin θ′ cosα′ = ρ0
4πR3

p

3
(ik)ϕ0 sin θin,

ρ0(ik)R3
p

∫ π

0

∫ 2π

0
sin θ′dθ′dα′φ1(θ

′, α′) = −ρ0(ik)R3
p

√
8π

3

{
a11

[
1 +

(
Rp
2h

)3
]

+
∞∑
l=2

(−1)l+1

√
2l + 1

3

√
(l + 1)!

2(l − 1)!

(
Rp
2h

)l+2
}
≈ −ρ0(ik)R3

p

√
8π

3
a11

[
1 +

(
Rp
2h

)3
]

≈
4πR3

p

3
ρ0(ik)ϕ0 sin θin

[
(ρp − ρ0)
(2ρp + ρ0)

+
3ρp(ρp − ρ0)
(2ρp + ρ0)2

(
Rp
2h

)3

+
3ρp(ρp − ρ0)2

(2ρp + ρ0)3

(
Rp
2h

)6]
,

ux = v(0)x

[
3ρp

(2ρp + ρ0)
+

3ρp(ρp − ρ0)
(2ρp + ρ0)2

(
Rp
2h

)3

+
3ρp(ρp − ρ0)2

(2ρp + ρ0)3

(
Rp
2h

)6
]
, (23)

where we introduced the notation v
(0)
x = iϕ0k sin θin for the velocity induced by the incident

and reflected from the interface waves at a point coinciding with the center of the particle,

but in the absence of the particle itself. As the distance to the boundary increases, the

expression for the velocity turns into the well-known formula for a free particle.

5. Scattering Amplitude

It is convenient to describe the behavior of the scattered field in the far field kr >> 1 in

terms of the scattering amplitude: ϕs/ϕ0 ≈ f(θ, α)
(
eikr/r

)
. Using the representation for

the scattered field Eq.(2) and the asymptotic for the Green’s function, we obtain

f(θ, α) =
1

4πϕ0

∫
Sp

{
ϕT (r′)

∂

∂n′

[
e−ik(er·r

′) + e−ik(er·r
′
i)
]

−
[
e−ik(er·r

′) + e−ik(er·r
′
i)
] ∂ϕT (r′)

∂n′

}
dS′. (24)
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Substituting into this expression the low-frequency expansion for the potential (6) and the

components of the Green’s function, we obtain

f(θ, α) =

∞∑
l=0

(ikRp)
l

l!

l∑
m=0

l!

(l −m)!m!

(−1)m

4πϕ0

∫
Sp

{
−
[
(er · r′/Rp)m + (er · r′i/Rp)m

]
× ∂

∂n′
[
Fl−m(r′) + φl−m(r′)

]
+

∂

∂n′
[
(er · r′/Rp)m + (er · r′i/Rp)m

]
×
[
Fl−m(r′) + φl−m(r′)

]}
dS′. (25)

The first terms of the expansion l = 0,m = 0, l = 1,m = 0, 1 don’t contribute. For terms

of the second order (l = 2), we have:

f2(θ, α) = −(kRp)
2

4πϕ0

∫
Sp

{[
(er · r′/Rp) + (er · r′i/Rp)

] ∂

∂n′
[
F1(r

′) + φ1(r
′)
]

+
∂

∂n′
[
(er · r′/Rp) + (er · r′i/Rp)

] [
F1(r

′) + φ1(r
′)
]

+
1

2

∂

∂n′
[
(er · r′/Rp)2 + (er · r′i/Rp)2

]
F0(r

′)

}
dS′. (26)

The calculation of the individual terms included in this expression leads to the following

results:

f
(1)
2 (θ, α) = −(kRp)

2

4πϕ0

∫
Sp

1

2

∂

∂n′
[
(er · r′/Rp)2 + (er · r′i/Rp)2

]
F0(r

′)dS′ = −2

3
k2R3

p. (27)

This term is related to the monopole source at the center of the particle, which takes into

account the compressibility of the medium surrounding the particle (in the second order in

terms of the wave number) caused by the incident field.

Calculation of the term associated with the vibrational velocity of the particle,

f
(2)
2 (θ, α) = −(kRp)

2

4πϕ0

∫
Sp

[
(er · r′/Rp) + (er · r′i/Rp)

] ∂

∂n′
[
F1(r

′) + φ1(r
′)
]
, (28)

is divided into two stages: finding the contribution induced by the incident field

f
(2a)
2 (θ, α) = −

k2R4
p

4πϕ0

∫ π

0

∫ 2π

0
sin θ′dθ′dα′

[
2(er · n′/Rp)− (2h/Rp)(er · ez)

] ∂F1(r
′)

∂n′

= −
k2R4

p

4πϕ0

∫ π

0

∫ 2π

0
sin θ′dθ′dα′

[
2(er · n′)− (2h/Rp)(er · ez)

] ϕ0

Rp
sin θin sin θ′ cosα′

= −2

3
k2R3

p (er · ek⊥) . (29)

and the contribution induced by the scattered field:

f
(2b)
2 (θ, α) = −

k2R4
p

4πϕ0

∫ π

0

∫ 2π

0
sin θ′dθ′dα′

[
2(er · n′/Rp)− (2h/Rp)(er · ez)

] ∂φ1(r′)
∂n′
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= −
k2R4

p

4πϕ0

∫ π

0

∫ 2π

0
sin θ′dθ′dα′2 sin θ sin θ′ cos(α− α′)2

∞∑
l=0

al1

[
(−)(l + 1)Yl1(θ

′, α′)

+
∞∑
λ=1

(−1)λ+lλ

√
2l + 1

2λ+ 1

√
(l + λ)!(l + λ)!

(l + 1)!(l − 1)!(λ+ 1)!(λ− 1)!

(
Rp
2h

)l+λ+1

Yλ1(θ
′, α′)

]

= −
k2R3

p

4πϕ0
8

√
2π

3
sin θ cosα

[
a11 −

1

2

∞∑
l=1

al1(−1)1+l
√

2l + 1

3

√
(l + 1)!

2!(l − 1)!

(
Rp
2h

)l+2
]

≈ −
k2R3

p√
4πϕ0

4

√
2π

3
sin θ cosαa11

[
1− 1

2

(
Rp
2h

)3
]

≈ 4

3
k2R3

p (er · ek⊥)
(ρp − ρ0)
(2ρp + ρ0)

[
1− 3ρ0

2(2ρp + ρ0)

(
Rp
2h

)3

− 3ρ0(ρp − ρ0)
2(2ρp + ρ0)2

(
Rp
2h

)6
]
, (30)

here ek⊥ = k⊥/k = (sin θin, 0, 0).

The calculation of the last term in Eq.(26), related to the potential distribution over the

particle surface, will also be divided into two parts. First we find the contribution induced

by the external field

f
(3a)
2 (θ, α) =

(kRp)
2

4πϕ0

∫
Sp

∂

∂n′
[
(er · r′/Rp) + (er · r′i/Rp)

]
F1(r

′)dS′

=
k2R3

p

4π

∫ π

0

∫ 2π

0
sin θ′dθ′dα′2(er · n′) sin θin sin θ′ cosα′ =

2

3
k2R3

p (er · ek⊥) . (31)

This term is related to the dipole source at the center of the particle, which takes into

account the oscillatory displacements of the medium caused by the incident wave.

The calculation of the contribution associated with the scattered field is the most cum-

bersome:

f
(3b)
2 (θ, α) =

(kRp)
2

4πϕ0

∫
Sp

∂

∂n′
[
(er · r′/Rp) + (er · r′i/Rp)

]
φ1(r

′)dS′

=
k2R3

p

4π

∫ π

0

∫ 2π

0
sin θ′dθ′dα′2

[
sin θ sin θ′ cos(α− α′) + cos θ cos θ′

]
{ ∞∑
l=0

al1

[
Yl1(θ

′, α′) +
∞∑
λ=1

(−1)λ+l
√

2l + 1

2λ+ 1

√
(l + λ)!(l + λ)!

(l + 1)!(l − 1)!(λ+ 1)!(λ− 1)!

×
(
Rp
2h

)l+λ+1

Yλ1(θ
′, α′)

]
+

∞∑
l=0

al−1

[
Yl−1(θ

′, α′) +

∞∑
λ=1

(−1)λ+l
√

2l + 1

2λ+ 1

√
(l + λ)!(l + λ)!

(l + 1)!(l − 1)!(λ+ 1)!(λ− 1)!(
Rp
2h

)l+λ+1

Yλ−1(θ
′, α′)

]}
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= −k2R3
p

2√
4πϕ0

√
2

3
sin θ cosα

[
a11 +

∞∑
l=1

al1(−1)1+l
√

2l + 1

3

√
(l + 1)!

2!(l − 1)!

(
Rp
2h

)l+2
]

≈ −k2R3
p

2√
4πϕ0

√
2

3
sin θ cosαa11

[
1 +

(
Rp
2h

)3
]
≈ k2R3

p

2√
4π

√
2

3
sin θ cosα

√
2π

3

× sin θin
(ρp − ρ0)
(2ρp + ρ0)

[
1 +

(ρp − ρ0)
(2ρp + ρ0)

(
Rp
2h

)3

+
(ρp − ρ0)2

(2ρp + ρ0)2

(
Rp
2h

)6
][

1 +

(
Rp
2h

)3
]

≈ 2

3
k2R3

p (er · ek⊥)
(ρp − ρ0)
(2ρp + ρ0)

[
1 +

3ρp
(2ρp + ρ0)

(
Rp
2h

)3

+
3ρp(ρp − ρ0)
(2ρp + ρ0)2

(
Rp
2h

)6
]
. (32)

In calculating the contribution of φ1(r
′), we used the fact that al−1 = −al1, sin θ′ cosα′ =√

2π/3
[
Y ∗l−1(θ

′, α′)− Y ∗l1(θ′, α′)
]
, sin θ′ sinα′ = i

√
2π/3

[
−Y ∗l−1(θ′, α′)− Y ∗l1(θ′, α′)

]
. Sum-

ming up the contributions of individual terms, we obtain

f2(θ, α) = −2

3
k2R3

p −
2

3
k2R3

p (er · ek⊥) +
2

3
k2R3

p (er · ek⊥)

+
4

3
k2R3

p (er · ek⊥)
(ρp − ρ0)
(2ρp + ρ0)

[
1− 3ρ0

2(2ρp + ρ0)

(
Rp
2h

)3

− 3ρ0(ρp − ρ0)
2(2ρp + ρ0)2

(
Rp
2h

)6
]

+
2

3
k2R3

p (er · ek⊥)
(ρp − ρ0)
(2ρp + ρ0)

[
1 +

3ρp
(2ρp + ρ0)

(
Rp
2h

)3

+
3ρp(ρp − ρ0)
(2ρp + ρ0)2

(
Rp
2h

)6
]

= −2

3
k2R3

p + 2k2R3
p (er · ek⊥)

(ρp − ρ0)
(2ρp + ρ0)

[
1 +

(ρp − ρ0)
(2ρp + ρ0)

(
Rp
2h

)3

+
(ρp − ρ0)2

(2ρp + ρ0)2

(
Rp
2h

)6]
. (33)

The given expression describes the contribution of the zeroth and first order terms to the

scattering amplitude. However, a comparable contribution comes from second-order terms,

which are not considered in this paper. This additional term is described by the following

expression:

∆f2 =
(kRp)

2

4πϕ0

∫
Sp

∂

∂n′
[
F2(r

′) + Φ2(r
′)
]
dS′. (34)

The integral in Eq. (34) describes the rate of change in particle volume. It does not depend

on angles and the entire expression (34) describes the correction term to the monopole

component of the scattering amplitude taking into account particle compressibility. A dis-

cussion of the effects associated with the manifestation of second-order terms is not given

in this work due to the cumbersome nature of the corresponding calculations. However, an

exception was made for ∆f2 due to the simplicity of the result:

∆f2 =
2

3
(k2R3

p)
ρ0c

2
0

ρpc2p
. (35)
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The scattering amplitude is determined by the contribution of the monopole and dipole

sources. The reason why the monopole component of the scattering amplitude does not

depend on the location of the particle relative to the boundary is as follows. The distance

dependence is a manifestation of the interaction of the particle with the boundary. For a

rigid boundary, this is equivalent to interaction with a mirror source. The interaction of a

monopole source located at the center of a particle is carried out through disturbances in the

surrounding incompressible liquid with divergence equal to zero. For this reason, the flux

through the closed surface surrounding the imaginary source is zero. That is, disturbances

do not affect the rate of change in the volume of the mirror source, which characterizes its

monopole radiation. For this reason, interaction with a rigid boundary does not lead to a

change in the monopole component of the scattering amplitude.

When the particle moves away from the surface Rp/2h→ 0, then the rescattering of the

components reflected on the boundary can be neglected, and the sum of expressions (33) and

(33) coincides with the double contribution to the scattering amplitude on a free particle

from the monopole and dipole component associated with oscillations along the boundary.

The factor 2 arises from the fact that the impenetrable boundary redistributes all radiation

only to the upper half-space. The manuscript is supplied with Electronic Supplement, which

contains plots describing dependence of the scattering amplitude on the observation angle

and the distance to the boundary. This file also contains a comparison with the results of

previously published works.

6. Discussion

The motion of particles in a fluid at the presence of acoustical field arises in applications

that include the sorting, positioning, and levitation of such objects, as well as for ultra-

sonic cleaning. A new ultrasonic cleaning technique, the Ultrasonically Activated Stream

(UAS),8,26–28 achieves cleaning with cold water streams through noninertial cavitation. If

the bubbles are ultrasonically activated when they are on the target, the cleaning ability of

the liquid is enhanced: the bubbles are attracted to the surface to be cleaned by Bjerknes

radiation forces and are not as rapidly washed away by the flow as they would be in the

absence of ultrasound.

Theoretical investigations of the acoustic radiation force acting on the active element

- the bubble under the conditions of application of the UAS method were recently pub-

lished.14,30 At the same time, the question remained open about the effect of the acoustic

field on pollution particles, which, under the influence of micro-flows generated by bubbles,

broke away from the wall and are carried away by the water flow. Wouldn’t the presence

of radiation force lead to adhesion of these particles to the surface being cleaned, only in a

different place – downstream? The present study was an attempt to answer this question.

For inorganic and organic pollutants, rigid and liquid sphere models were used, respectively.

Solving this problem in an approximation linear in the amplitude of the external field

and finding the oscillatory flows in the vicinity of the inclusion makes it possible to compare

their magnitude for the particle and the bubble. The conditions for implementing the UAM
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method are as follows: bubbles and contamination particles 30 microns in size are in an

ultrasonic field with a frequency of 135 kHz and the pressure amplitude of 50 kPa. For a

particle located at a distance h = 2Rp from the boundary at the same values of the material

parameters that were used in constructing Fig. 2 and at the angle of incidence of θin = π/4,

Eq. (23) leads to the following displacement: ∆x ≈ 0.3 µm.

For a bubble, the dominant contribution to the displacement amplitude of surrounding

liquid particles is made by radial pulsations.11,14 An estimate based on the same defining

parameters leads to the following value of the amplitude of radial displacements ∆R ≈ 8

µm. Note, that for a resonant bubble with a radius R0 = 24 µm, the difference can be even

more significant.

The above estimate indicates the smallness of the radiation force exerted on the parti-

cle, since it is described by the quadratic form of the terms of the first approximation.15,20

Explicit expressions for the radiation force and comparisons with previously published re-

sults19,20 will be presented after taking into account second-order terms to describe the most

commonly considered case of normal incidence.

The disadvantage of using a simplified – rigid boundary model can be corrected, since

the existing difficulty in finding the long-wave expansion of the half-space Green’s function31

has been overcome.32

7. Conclusions

A method is presented for obtaining an analytical expression for the Rayleigh scattering

due to a sound wave incident on the fluid sphere near a planar rigid boundary. The method

follows the approach of Dassios22 and extend previous findings.21 The effect of the inter-

action between the sphere and the boundary is strongest when the sphere is on the order

of one sphere radius from the boundary. Comparison with numerical calculations confirms

the validity of the obtained analytical expressions. The dominant disturbance arising in the

long-wavelength approximation is dipole oscillations along the boundary surface.
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