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A B S T R A C T

The study evaluates the applicability of the CWT method for identifying mercury sources in a region with high
anthropogenic emissions. Analysis is conducted to compare results on grids of 1 × 1◦, 0.5 × 0.5◦, and 0.1 × 0.1◦.
New data on atmospheric atomic mercury concentrations over the Sea of Japan and the East China Sea are
compared, with higher resolution enabling clearer source localization. Results show increased mercury con-
centrations in winter, likely due to the heating season, yet they remain lower than previous values. Comparing
grid resolutions indicates higher resolution can better pinpoint sources and disregard some emissions. The
analysis also confirms transboundary transfer of atomic mercury from northeast China to the southeast Korean
Peninsula.

Mercury is a persistent and toxic chemical substance that can bio-
accumulate and negatively affect human health (Chen et al., 2019; Fu
et al., 2012). Particular attention focuses on atomic elemental mercury
[GEM], which can enter the atmosphere and move in it for long dis-
tances over long periods, up to a year (AMAP/UNEP, 2013; Gustin et al.,
2015). As a result of dry and wet deposition on the earth’s surface,
mercury can turn into methylmercury and have effects on human health
and the ecosystem (Beckers and Rinklebe, 2017; Lindberg et al., 2007).

The following fact was proved 200 years ago. The increase in mer-
cury concentration in the atmosphere is connected with the beginning of
the industrial period (UNEP, 2013). The Asian Region is the largest
contributor to atomic mercury emissions into the atmosphere (Pirrone
et al., 2010). China is the leader (Zhang et al., 2015). The atmospheric
transfer of GEM into the Sea of Japan from China and the Yellow Sea
Region has previously been recorded many times (Kalinchuk et al.,
2018, 2020). However, few studies focus on the winter period and the
impact of the winter monsoon. The winter period shows increased GEM
emissions into the atmosphere due to the burning of Hg-containing coal
because of the beginning of the heating season (Pirrone et al., 2010;
UNEP, U, 2013; Wang et al., 2000). The western part of the East China
Sea and the Yellow Sea recorded GEM transfer from the Chinese main-
land by the northern winter monsoon (Wang et al., 2017).

In recent years, the CWT approach has been widely used in studies on
mercury monitoring in the atmosphere (Kalinchuk et al., 2020). It
identifies potential regions-sources of mercury using inverse trajectories

of air masses. Attempts to localize Hg(0) sources using CWT analysis
from the Sea of Japan indicated an extensive source, extending from the
east coast of China to the east coast of the Korean Peninsula (Kalinchuk
et al., 2020).

The research purpose is to evaluate the applicability of the CWT
analysis approach with the high resolution capability for the localization
of the atomic mercury resources. The main research tasks are as follows:

To compare the CWT analysis approach of high resolution with low
one.
To determine zones that suffer the influence of the transboundary
transfer of the atomic mercury.
To analyze the specifics of the temporal and spatial spread of Hg(0)
in the surface atmosphere of East Asian seas during the autumn and
winter of 2019.
To assess the territorial contribution to mercury emissions into the
surface atmosphere.

This paper uses the results of Hg(0) measures in the surface atmo-
sphere of the Sea of Japan and the East China Sea. These measures were
obtained in two stages during the 88th voyage of the Academic Lav-
rentyev R/V in October–December 2019. The passage from Port Vladi-
vostok to the South China Sea and back (Fig. 1). Measures were
conducted with the use of the atomic absorption analyzer for mercury
RA-915 M (Lumex Ltd., Saint-Petersburg). The detection limit is 0.3 ng/
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m3 (Sholupov et al., 2004). The values were averaged in 1 min with a
zero check every 5 min. In order to demonstrate the spatial and temporal
distribution, the results were averaged at 30-minsute intervals. In order
to perform the CWT analysis, the measures were averaged each hour of
the study period. The main meteorological parameters were determined
every 30 min with the use of weather station Davis Vantage Pro (Davis
Instruments Corp., USA). These parameters include temperature, hu-
midity, pressure, precipitation, solar radiation, wind speed, and
direction.

In order to obtain return trajectories, the well-described HYSPLIT
system with the GDAS1 meteorological database with ensemble option
was used (Fang et al., 2018; Kalinchuk et al., 2020; Liu et al., 2019a),
which allows obtaining 27 possible trajectories from a measuring point.
The 72-hour reverse trajectories of the air masses were modeled for each
hour of the researched period. Hence, 8.343 single trajectories were
modeled.

In the CWT analysis, each inverse trajectory of air mass movement
during the measurement is associated with the concentration of mercury
(Hg(0)) obtained at that time (Kalinchuk et al., 2020). This study pre-
sents the results of an analysis with different grid cell sizes (i, j): the most
widely used 0,5 × 0,5◦ (Liu et al., 2019b; Fang et al., 2018) and 1 × 1◦

(Kalinchuk et al., 2020), as well as in high resolution of 0,1 × 0,1◦

(Kalinchuk et al., 2022; Kalinchuk, 2023). In order to filter out emis-
sions, only the CWTij values where at least two air mass trajectories
intersected were considered.

To compare the potential sources of Hg(0), the entire territory of the
region was plotted on a 0,1 × 0,1◦ grid. The percentage coverage of the
area using CWT analysis was estimated by dividing the total number of
cells in the region by the number of cells with a CWT value. The
boundaries of the regions were used from open sources on the Internet,
the boundaries of the regions of China (CASM et al., 1996).

During the study period, Mercury concentrations (ng/m3) in the
surface atmosphere varied from 0.69 to 3.2, average 1.25, median 1.21,
and standard deviation 0.3. Hg(0) concentrations increased from the
central part of the Sea of Japan to the Korean Strait along the vessel’s
voyage from the port of Vladivostok (Fig. 1a), reaching a maximum of
3.24 ng/m3 near the eastern part of the Korean Peninsula. A decrease in
concentration occurs as the vessel moves to Vladivostok (Fig. 1b). From

southeast China to the central East China Sea, from 2.2 ng/m3 to a
median of 1.2 ng/m3. The average Hg(0) concentration in the surface
atmosphere along the way from Vladivostok is 1.23 ng/m3 for the Sea of
Japan and 1.05 ng/m3 for the East China Sea. During the way back, the
values are 1.26 ng/m3 for the Sea of Japan and 1.46 ng/m3 for the East
China Sea.

The temporal distribution of Hg(0) in the surface atmosphere during
the investigated period is not homogeneous (Fig. 2). The median con-
centrations in October 2019 were 1.23 ng/m3 for the Sea of Japan and
1.05 ng/m3 for the East China Sea. In December 2019, median con-
centrations of 1.26 ng/m3 were obtained for the Sea of Japan and 1.46
ng/m3 for the East China Sea. Between October and December, some
meteorological parameters decrease:

• Average temperature from 15.2 to 8.5 ◦C;
• Humidity from 69 to 62 %;
• Solar radiation from 140 to 91 W/m2/h.

Two main regions with elevated mercury emissions are identified by
the CWT analysis. These are Eastern China and the Korean Peninsula
(Fig. 3). With a resolution of the grid cell size (i, j): 1 × 1◦, the southern
part of the Sea of Japan can be considered as a potential source (Fig. 3a).
A detailed investigation reveals that the elevated concentrations in this
area are due to the arrival of two air masses from northern and north-
eastern China by different routes. One is through the Korean Peninsula
and the other through the central Sea of Japan. This is evident with the
high resolution of 0.1 × 0.1◦ CWT analysis. (Fig. 3c).

The distribution of CWT within the regions is quite varied (Fig. 4). In
order to assess the reliability of the analysis, data on the percentage
coverage of the region and the number of points on the CWT trajectory
are presented (Table 2). For Northeastern China, South-central China,
and Russia, the coverage does not exceed 15 % of the total territory,
indicating a weak reliability of this analysis for these areas. Among re-
gions with a coverage percentage greater than 60 %, higher CWT values
were observed over the eastern Chinese and South Korean territories
(1.49 and 1.45 ng/m3). It should be noted that all the seas have similar
median CWT values (between 1.22 and 1.24 ng/m3), except for the
Korean Gulf, which has a slightly higher value (1.35 ng/m3).

Fig. 1. Spatial distribution of Hg(0) in the surface atmosphere during the 88th voyage of the Academic Lavrentyev R/V from Vladivostok (a) and to Vladivostok (b),
autumn-winter 2019.
Source: Compiled by the authors.
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Fig. 2. Temporal distribution of Hg(0) and some meteorological parameters in the surface atmosphere during the 88th voyage of the Academic Lavrentyev R/V,
autumn-winter 2019.
Source: Compiled by the authors.
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Fig. 3. Results of the CWT analysis at different resolutions a – 1 × 1◦, b – 0.5 × 0.5, c– 0.1 × 0.1◦ for the investigated period.
Source: Compiled by the authors.
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The determined average concentration of Hg(0) in the surface at-
mosphere of the Sea of Japan in October 2019 is 1.23 ng/m3. It is
significantly lower than the previously reported concentration of 1.8 ng/
m3 in October 2010 (Kalinchuk and Astakhov, 2014) and 1.39 ng/m3 in
October 2018 (Kalinchuk et al., 2020). For the East China Sea, the
average values obtained in October 2019 are 1.05 ng/m3. It is half the
value previously recorded in October–November 2013, when they
amounted to 2.2 ng/m3 (Wang et al., 2016a). The median concentra-
tions of atomic mercury obtained during the investigated period are
significantly lower than the average for the Northern Hemisphere of
1.5–1.7 ng/m3 (Lindberg et al., 2007). It can be attributed to the global

tendency for Hg(0) concentration to decrease in the surface atmosphere
(Zhang et al., 2016). In more detail, all the measurements are presented
in Table 1.

The obtained data of Hg(0) in the surface atmosphere in the East
China Sea for December 2019 is 1.46 ng/m3, which is significantly
higher than in October, which is 1.05 ng/m3. The increased concen-
trations in the surface atmosphere of the Sea of Japan and the East China
Sea in winter compared to autumn are probably due to the increased
anthropogenic impact on the air masses, such as the beginning of the
heating season and the burning of biomass (Liu et al., 2019a).

The increase in analysis resolution to 0.1 × 0.1◦ made it possible to
localize the source regions. On the Korean peninsula, the southeastern
part is highlighted. According to data (AMAP/UNEP, 2013; Zhang et al.,
2015), there are no major sources of mercury in this region. However, it
was previously found that the transboundary transport of Hg(0) from
northern regions of China greatly affects the region (Liu et al., 2019b).
The presented data from CWT analysis coincide with the PSCF (potential
source contribution method) describing the transfer of Hg(0) from
northern and eastern China (Liu et al., 2019b).

In the territorial comparison of CWT, East China’s leadership can be
attributed to its global dominance in mercury emissions(AMAP/UNEP,
2013). The increased value of CWT over the territory of the Korean Gulf
is associated with previously repeatedly recorded transfers of Hg(0)
from the northern regions of China to the Korean Peninsula (Nguyen
et al., 2011).

The reported data on Hg(0) concentration in the surface atmosphere
complements the global data during the autumn and winter periods. The
measures were first taken in December for the East China Sea. The ob-
tained mercury concentrations reveal the global tendency towards lower
concentrations of atomic mercury in the atmosphere and increased

Fig. 4. Distribution of CWT Values by Region.
Source: Compiled by the authors.

Table 1
Data on the content of Hg(0) in the surface atmosphere of the East Asian seas.

Region Time Device Min. — max. Mean Median SD Published

Japan Sea October 2019 RA—915М 0.72—3.23 1.23 1.14 0.39 In this work
December
2019

RA—915М 0.85—1.83 1.26 1.25 0.17 In this work

December
2018

RA—915М 0.60—2.48 1.19 1.19 0.16 (Lopatnikov and Kalinchuk, 2019)

February 1990 0.64—0.79 0.7 0.08 (Stepanov and Kalyagin, 1997)
July 2007 RA—915+ 0.50— 9.8 2.8 NA (Astakhov et al., 2011a)

(Astakhov et al., 2011b)
July–August 2008 Tekran 2537B 0.30—1.59 0.8 0.36 (Kang and Zhouqing, 2011)
September 2008 Tekran 2537B 0.70—2.24 1.14 0.23 (Kang and Zhouqing, 2011)
November 2010 RA—915+ 0.60—3.80 1.9 0.8 (Aksentov, 2012)
October 2010 RA—915+ 0.70—2.80 1.8 1.7 0.4 (Kalinchuk and Astakhov, 2014)
September–October 2015 RA—915М 0.30—5.20 1.6 1.6 0.6 (Kalinchuk et al., 2018)
September 2018 RA—915М 1.15—2.50 1.59 1.51 0.22 (Kalinchuk et al., 2020)
October 2018 RA—915М 1.23—1.55 1.39 1.39 0.07 (Kalinchuk et al., 2020)
August–September 2017 RA—915+ 1.09—2.41 1.62 1.61 0.18 (Kalinchuk et al., 2019)

Bohai Sea May 2012 Tekran 2537B 2.71 0.49 (Wang et al., 2020)
November 2012 Tekran 2537B 1.98 0.91 (Wang et al., 2020)
May 2014 Tekran 2537B 2.51 0.77 (Wang et al., 2020)
November 2014 Tekran 2537B 3.64 2.54 (Wang et al., 2020)

Bohai Sea and Yellow Sea April–May 2014 Tekran 2537B 2.03 0.72 (Wang et al., 2016b)
November 2014 Tekran 2537B 2.09 1.58 (Wang et al., 2016b)
November 2013 Gold trap 0.2–9.2 2.1 1.1 (Wang et al., 2017)

Yellow Sea May 2014 Tekran 2537B 1.89 0.4 (Wang et al., 2020)
November 2014 Tekran 2537B 1.59 0.5 (Wang et al., 2020)
May 2012 RA—915+ 0.85—2.79 1.86 0.40 (Ci et al., 2015)
November 2012 RA—915+ 0.93—5.09 1.84 0.50 (Ci et al., 2015)
July 2010 RA—915+ 1.68—4.34 2.61 0.50 (Ci et al., 2011)
September 2007 RA—915+ 1.56—2.97 2.43 2.28 0.59 (Nguyen et al., 2011)
October 2007 RA—915+ 1.29—2.36 1.82 1.81 0.51 (Nguyen et al., 2011)
April 2008 RA—915+ 1.36—1.99 2.03 1.86 0.66 (Nguyen et al., 2011)

East China Sea June–July 2013 Tekran 2537B 1.61 (Wang et al., 2016a)
October–November 2013 Tekran 2537B 2.20 (Wang et al., 2016a)
October 2019 RA—915М 0.7–1.63 1.05 1.04 0.17 In this work
Декабрь 2019 RA—915М 1.05–2.26 1.46 1.41 0.25 In this work

East China Sea and South China Sea October 1989 0.90—20.8 8.31 5.76 (Stepanov and Kalyagin, 1997)

Source: Compiled by the authors.
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emissions during the winter period due to the beginning of the heating
season.

The application of the CWT analysis with high resolution enabled us
to detect emissions and analysis mistakes without the need to increase
the number of trajectory intersections in the grid cell as previously
required (Kalinchuk et al., 2020). The increased resolution makes it
possible to see zones of atomic mercury transport and to localize sources
beyond the region but within parts of the region, even considering the
short period of the research.

The peculiarity of the vessel’s movement made it possible to inves-
tigate regions both close to sources of anthropogenic mercury emissions
and vulnerable to their influence. The identification of discharge zones
through the high resolution CWT analysis will make it possible to define
the boundaries of such zones and the sources influencing them in longer
studies. By employing the geoprocessing technique for regional com-
parison of CWT data, we can clearly assess the relative contribution of
each area.
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