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ABSTRACT:
The method of sound propagation modeling based on the mode parabolic equations (MPEs) theory is applied to the

verification scenarios for environmental impact assessment. The results for selected scenarios from the 2022

Cambridge Joint Industry Programme Acoustic Modelling Workshop and the configuration of the computational

programs AMPLE and MPE for these scenarios is discussed. Furthermore, it is revealed how the results for these

scenarios change in the case of the bottom slope across and along the propagation path. It is observed that for the

cross-slope propagation scenario, the distribution of acoustic energy over decidecade frequency bands does not

depend on the slope angle and is practically the same as that for range-independent environment. At the same time,

the dependence of energy distribution is noticeable for up- and downslope propagation scenarios, where greater slope

angles result in higher propagation loss. It is also shown that MPEs are capable of adequately handling typical sound

propagation problems related to the environmental impact assessment for frequencies up to 1000 Hz. A possibility of

using frequency-dependent mesh size and number of modes must be implemented in codes based on this approach.
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I. INTRODUCTION

Mode parabolic equations (MPEs) theory has recently

emerged as one of the promising tools for modeling of low-

frequency sound propagation. Its development was origi-

nally motivated by executives of the Western Gray Whale

program, which was undertaken jointly by the operators of

Sakhalin-1 and Sakhalin-2 oil and gas projects on Sakhalin

island (Russia; Rutenko et al., 2015; Rutenko et al., 2022).

The primary aim of the program was the monitoring and

preservation of the Okhotsk-Korean population of gray

whales that spend summertime feeding on the benthos-rich

Sakhalin shelf. Noise pollution caused, e.g., by seismic sur-

vey activities and supply vessel operation was identified as

one of major factors of environmental impact within this

program, and a clever thought was given to its assessment

and mitigation.

One of the cornerstones of noise impact assessment are

the tools for the modeling of sound propagation in three-

dimensional (3D) shallow-water environments. To handle

computational problems associated with such modeling, a

technique based on the MPEs theory was developed (Petrov

and Antoine, 2020; Petrov et al., 2020; Trofimov et al.,
2015, 2018). Although the concept of MPEs originally was

introduced by Collins (1993) and later generalized by

Abawi et al. (1997), the development of our approach

started with the papers by Trofimov (1999). His original

results underwent major improvements in subsequent papers

that prepared the basis for the computational program MPE
based on the numerical solution of narrow-angle MPEs,

where mode coupling was taken into account (Trofimov

et al., 2015, 2018). It is worth highlighting that the original

derivation of MPEs within this approach is accomplished

using the so-called method of multiple scales.

An alternative approach was proposed by Petrov and

Antoine (2020), who used a somewhat more traditional deri-

vation of MPEs involving a factorization of the operator in

horizontal refraction equations (Jensen et al., 2011). Such

factorization results in a pseudo-differential mode parabolic

equation (PDMPE) that can be very efficiently solved by the

split-step Pad�e (SSP) method (Petrov and Antoine, 2020;

Petrov et al., 2020). PDMPEs have a very large aperture in

the horizontal plane [some authors use the term extra-wide-

angle parabolic equations (PEs) for such equations] and

allow for very large steps in the marching variable, even

exceeding the wavelength by a factor of 10. However,

PDMPEs do not take mode interaction into account in their

current implementation (the code called AMPLE), i.e., they

are derived from adiabatic horizontal refraction equations,

where the mode coupling terms are neglected (Jensen et al.,
2011).
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It is important to stress that methods on which both

AMPLE and MPE codes are based have been developed with 3D

propagation problems in mind (which is very reasonable given

the propagation conditions on the Sakhalin shelf). Thus, in the

verification scenarios A1 and B1 from the 2022 Joint Industry

Programme (JIP) Acoustic Modelling (JAM) Workshop

(Ainslie et al., 2024) discussed in the present work, both models

cannot fully reveal their strengths. On the contrary, they simply

require excessive computational effort in two-dimensional (2D)

range-independent propagation scenarios, where mode ampli-

tudes can be computed analytically. We, therefore, modified the

broadband range-independent scenario B1 by making the sea-

bottom sloping and studied the dependence of modeling results

on the slope angle for the cases when propagation path is

aligned along or across the depth gradient.

We also find it important to provide potential users of

our models with a detailed explanation of how such cases

should be handled in practice. This includes the choices of

computational grids for PE, the number of normal modes

that should be taken into account, bottom truncation depth,

and other parameters that are usually not discussed in the

papers where the capabilities of MPEs to take 3D effects

into account are highlighted. Our aim here is to provide

interested users with a tutorial on configuration of the MPE-

based models that can be subsequently used for solving

more complex problems (as the parameters mentioned

above would not drastically change in the case of an envi-

ronment with, e.g., more complicated 3D bathymetry fea-

tures and a nontrivial sound speed distribution).

The article is organized as follows. First, we briefly

introduce both computational models involved (Sec. II).

Second, we study the JAM workshop scenarios A1 (Sec. III)

and B1 (Sec. IV). Next, we also investigate the modified B1

scenario with the bottom slope across (Sec. V) and along

(Sec. VI) the sound propagation path (i.e., the source-

receiver line). Finally, the key findings are summarized in

the conclusion (Sec. VII).

Throughout this study, we maintain consistency with

the notation from Ainslie et al. (2022) and the related ISO

18405 terminology standard (ISO, 2017).

II. MPES THEORY

Within the MPEs theory (Abawi et al., 1997; Collins,

1993; Petrov et al., 2020; Trofimov, 1999), acoustic field in

a 3D range-dependent waveguide is presented in the form of

an expansion over normal modes (Jensen et al., 2011;

Katsnelson et al., 2012) such that

Pðf ; x; y; zÞ ¼ Sðf Þ
XM

m¼1

Amðx; yÞ/mðz; x; yÞ; (1)

where S(f) is the source spectrum, /mðz; x; yÞ are eigenfunc-

tions of the modes (in principle, for any fixed pair x,y, they

are functions of the depth z; however, in the range-

dependent environment, they also parametrically depend on

the horizontal coordinates), and Amðx; yÞ are the respective

mode amplitudes. In simple words, Am are coefficients of

the field representation in the basis f/mg, whereas the basis

itself varies on the horizontal coordinates x, y.

In the simplest case of the range-independent environ-

ment, the basis is the same in the entire computational

domain (i.e., for all x, y), whereas the mode amplitudes can

be computed by a simple analytical formula, and Eq. (1) can

be rewritten as

Pðf ; x; y; zÞ ¼ i

4qw

Sðf Þ
XM

m¼1

H
ð1Þ
0 ðkmrÞ/mðzsÞ/mðzÞ; (2)

where zs is the source depth (it is deployed at x ¼ 0; y ¼ 0;
z ¼ zs), r is the range, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and km is the horizon-

tal wavenumber of the mth mode.

Note that the main issues associated with the implemen-

tation of Eq. (2) are the truncation of the computational

domain in z and truncation of the infinite series over the

modes at z¼H. There are ways to handle the infinite bottom

halfspace, but they require computations of branch line inte-

grals that render the correct computations in the range-

dependent scenarios impractical. In the models described

below, the total depth of the computational domain is

always finite, i.e., we solve the problem for z 2 ½0;H�, where

H is sufficiently large. In addition to MPE-based models

that are designed to handle 3D inhomogeneous media, we

also use a simple code for 2D range-independent scenarios,

called ac_modes (available online1), written in MATLAB

(MathWorks, Natick, MA) and validated via comparisons

with well-known Kraken and Orca solvers as well as the

source images solution (Deane and Buckingham, 1993) for

the special case of the horizontal bottom (we use discretiza-

tion of Dz ¼ 0:125 m in depth and the same truncation depth

and mode numbers as were used for AMPLE).

A. AMPLE: A code based on PDMPEs

The first model that was used in this study is called

AMPLE (ample-angle mode parabolic equation; see Petrov

and Tyshchenko, 2020; Petrov et al., 2020; Tyshchenko

et al., 2021). Within the latest stable version of the AMPLE
code based on PDMPEs, mode amplitudes Amðx; yÞ in Eq.

(1) are computed in adiabatic approximation by solving one-

way counterpart of the horizontal refraction equations

@2Am

@x2
þ @

2Am

@y2
þ k2

mðx; yÞAm ¼ �/mðzsÞ dðxÞdðyÞ;

m ¼ 1;…;M: (3)

Introducing a reference horizontal wavenumber, e.g.,

the one in the vicinity of the source, km;0 ¼ kmð0; 0Þ, we can-

cel out the principal oscillation in Am such that

Amðx; yÞ ¼ eikm;0xBmðx; yÞ;

and hereafter solve an equation for the envelope function

Bmðx; yÞ.
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Obtaining a one-way counterpart of an equation for Bm

and formally integrating it with respect to x on a small inter-

val Dx ¼ h, we obtain the propagator P̂, which has the form

Bnþ1
m ¼ exp ikj;0h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L̂m

q
� 1

� �� �
Bn

m � P̂Bn
m; (4)

where by definition Bn
mðyÞ ¼ Bmðxn; yÞ (assume that a uni-

form grid in x is introduced, xnþ1 � xn ¼ h), and L̂m ¼ ð@2
y

þk2
m � k2

m;0Þ=k2
m;0. A marching scheme that computes the

propagators [Eq. (4)] can be designed using the SSP method

(Petrov et al., 2020) with suitable perfectly matched layers

(PML) or transparent boundary conditions (TBCs) and a

wide-angle starter for modeling a point source.

The program AMPLE has been in development since

2019 in Cþþ programming language. It is based on the

computation of acoustic field by Eq. (1), where the mode

amplitudes are computed by solving the respective

PDMPEs by the SSP method. The program implements the

computation of 3D acoustic pressure, particle acceleration,

and sound exposure level (SEL) fields, as well as the calcu-

lation of modal functions and their respective wavenum-

bers. AMPLE is also capable of computing sound pulse

waveform (i.e., the sound pressure as a function of time) at

specified receiver locations. The outputs are computed for a

user-defined area specified by a uniform computational

grid. The input data includes information on the bottom

layers’ structure (sound speed, density, and attenuation),

hydrology (sound speed distribution inside the water col-

umn), and bathymetry. 3D distributions of acoustic pres-

sure, particle acceleration, and SEL are output on the same

grid. For mode computation, AMPLE uses the normal modes

toolbox CAMBALA (Petrov et al., 2019). AMPLE receives

input data as a configuration file in JSON format that speci-

fies media parameters and mode computation parameters,

frequencies, source function or spectrum, precomputed

modal functions and wavenumbers (if necessary), receiver

points, and PE parameters (Pad�e approximation order, ini-

tial and boundary conditions, etc.). The dimensions of mul-

tidimensional input and output data are specified in JSON
format and the data itself can be stored in either text or

binary files in row-major order. The program employs a

command line interface, allowing the user to specify what

should be computed, how the results should be output, and

how many processes to use for computation. The source

code and sample configurations are available on GitHub

(Petrov and Tyshchenko, 2020).

B. Narrow-angle MPEs with modes interaction

The program MPE is based on the theory of narrow-

angle MPEs with mode interaction that was developed in

Trofimov et al. (2015, 2018). For the reader’s convenience,

we reproduce the main equations of this theory here.

Let us represent the bathymetry in the domain of inter-

est by the function h(x,y),

hðx; yÞ ¼ h0ðxÞ þ h1ðx; yÞ; (5)

where h1 is considered to be a small transverse variation of

the profile h0 along the preferred direction of propagation.

The sound speed distribution is also recast in the form

x2

c2
¼ j2ðx; zÞ þ �ðx; y; zÞ; (6)

where � is small in comparison to j2.

In these notations, narrow-angle MPE with mode inter-

action can be written as

2iKbx þ iK0bþ byy þ Nb ¼ 0; (7)

where K ¼ KðxÞ ¼ diagðk1ðx; 0Þ; k2ðx; 0Þ;…; kMðx; 0ÞÞ is a

diagonal matrix formed by the horizontal wavenumbers

computed at y¼ 0, and vector function bðx; yÞ represents the

envelope function for mode amplitudes

aðx; yÞ ¼ eiUðxÞbðx; yÞ;

and the mode interaction matrix Nðx; yÞ has the form

Nðx; yÞ ¼ e�iUðxÞTðx; yÞeiUðxÞ;

Nnmðx; yÞ ¼ Tnmðx; yÞeUnðxÞ�UmðxÞ:

The elements of the matrix T are defined by the formula

Tnmðx; yÞ ¼
ðH

0

1

q
�/m/n dz� ikm Vnm � Vmnð Þ

þ h1/m/n k2
m

1

qþ
� 1

q�

� �
� x2

c2q

 !
þ

2
4

8<
:
þ x2

c2q

 !
�

3
5� h1

1

q2
/m;z/n;z

� qð Þþ � qð Þ�
� �9=;

����
z¼h0

;

where the term in the braces is computed in a more general

case for all media interfaces, and Vmn ¼
ÐH

0
ð1=qÞ/m;x/n dz.

Note that MPEs in Eq. (7) are formally derived by the

method of multiple scales (it can be also considered as a

generalization of Wentzel-Kramers-Brillouin-Jeffreys to the

case of vector functions as shown in Trofimov et al., 2023).

For this reason, the requirements in Eqs. (5) and (6) are also

somewhat formal.

From the expressions for coupling terms Tnmðx; yÞ, one

can conclude that the MPEs in Eq. (7) do not preserve

energy flux unlike some other models based on normal

modes theory (mostly available for 2D problems; e.g.,

Abawi, 2002; Godin, 1998; Tromp, 1994). However, as the

MPE approximation is of asymptotic nature, it is natural to

expect asymptotic energy flux conservation (modulo some

higher-order terms with respect to the small parameter).

This property was established in Trofimov et al. (2015) in

the form of a theorem.
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Based on the narrow-angle MPE theory, the program

MPE has been in development from 1997 to 2023. It consists

of five modules that provide numerical simulations of vari-

ous acoustic 2D and 3D sound propagation problems using

different mathematical methods. The first module is a tool-

box for reading and preprocessing the input data required

for further computations. The data consist of bathymetry

and bottom layers’ specifications (depth, density, and sound

speed). The second module calculates modal functions and

their respective wavenumbers using the inverse iteration and

bisection methods, respectively. The values are computed

along the path (or paths) of sound propagation, and

Richardson’s extrapolation technique of arbitrary order can

be applied to improve the accuracy of the eigenvalue prob-

lem solution. The third module provides numerical solutions

to MPEs with or without mode interaction in 2D scenarios,

whereas the fourth module handles sound propagation in 3D

layered media. The latter implements adiabatic and coupled

modes narrow-angle MPE solution (Trofimov et al., 2015)

by the Crank-Nicolson method with the Gaussian starter

(Jensen et al., 2011) and PML for artificial domain trunca-

tion. The module outputs acoustic pressure field as well as

particle velocities, and accelerations are obtained. The fifth

module is used to simulate the propagation of sound pulses

by the Fourier synthesis method. It can be applied for the

2D and 3D scenarios in adiabatic or interacting modes prop-

agation regimes. It allows to compute acoustic pressure

waveforms as well as the respective components of particle

acceleration at arbitrarily placed receivers (the number of

which is not limited). At the same time, power spectra of

acoustic pressure and particle acceleration for each of the

receivers are also obtained. The program MPE is developed

in the Cþþ language with the graphic user interface imple-

mented with Microsoft Foundation Class Library. The out-

put consists of several MATLAB (MathWorks, Natick, MA)

matrices, CSV, and plain text files, where each contain one

of the computed tensors: sound pressure, sound pulse wave-

forms, particle accelerations, and velocities.

III. CASE A1

In this section, we consider a shallow-water range-inde-

pendent waveguide up to the range of 30 km. The monopole

point source is located at x ¼ 0; zs ¼ 5 m. Media parameters

provided in the workshop specification (Ainslie et al., 2024)

are shown in Table I (the same scenario was used at the pre-

vious JIP workshop; see Ainslie et al., 2019a; Ainslie et al.,
2019b). The acoustic source emits a sine waveform at a

fixed frequency. Sound propagation modeling was per-

formed using AMPLE and MPE, as well as ac_modes,

which actually uses range-independent formula Eq. (2). We

performed computations only for frequencies up to 1 kHz as

all our codes were designed to handle low-frequency propa-

gation scenarios (using normal modes is hardly an optimal

solution for f > 1 kHz).

Because AMPLE and MPE operate in 3D environ-

ments, the actual computation area is extended to

06 x6 30 000;�15006 y6 1500. To avoid dealing with

branch line integrals, we also truncated the computa-

tional domain in z at z¼H (the quantity H can be fre-

quency dependent, and a rule of thumb can be H � 30k,

i.e., few tens of wavelengths). The grid parameters also

depend on the source frequency as shown in Table II.

Note that we present the largest possible values of Dx and

Dy for which the solution still converges, although we

computed the propagation loss (PL) curves in the figures

below with higher resolution to make them look

smoother. Ideally, the grid resolution Dy in the transverse

direction for both models is chosen from the requirement

that there are no less than 5 points per horizontal wave-

length (although we reduce this number to 3 points per

horizontal wavelength at 1 kHz). For MPE, the step in

range, Dx, must be comparable to Dy, whereas for

AMPLE, it can be much larger than the wavelength result-

ing from the capabilities of SSP integration technique.

For AMPLE and MPE programs, the modes were com-

puted with the mesh size Dz ¼ 0:1 m (this is more than

enough to accurately resolve vertical modes at all frequen-

cies involved), although higher accuracy would not pose

any difficulties as even in the range-dependent scenarios,

the computation of normal modes for the entire domain

takes an insignificant portion of total computational time

(especially if certain mathematical tricks are used to

improve its efficiency). Configuration files for AMPLE pro-

gram can be found at the respective GitHub repository

(Petrov and Tyshchenko, 2020).

TABLE I. Media parameters are shown for the case A1, with a 50 m water

layer overlying a fluid sediment halfspace.

Layer

Thickness

(m)

Density

(kg/m3)

Sound speed

(m/s)

Attenuation

(dB=k)

Water 50 1 1500 0

Sediment 1 2 1700 0.5

TABLE II. The configuration parameters are displayed for the programs AMPLE and MPE in scenario A1 (including grid parameters in the horizontal plane

and truncation depth z¼H for which the modes were calculated), and the total computational time for each frequency.

AMPLE MPE

Frequency (Hz) Dx (m) Dy (m) Time (s) Dx (m) Dy (m) Time (s) H (m) Number of modes

10 450 2 8 10 6 120 4800 50

50 100 1 12 5 2 180 2500 2

100 50 0.5 15 4 1 300 1500 3

1000 5 0.5 1200 1 0.5 12 600 1000 32
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According to the description of verification scenarios,

the output of the following quantities was requested (Ainslie

et al., 2024):

NPL;p x; y; zð Þ ¼ �20 log10

���� p x; y; zð Þ
p0

����; (8)

NPL;a x; y; zð Þ ¼ �20 log10 a x; y; zð Þð Þ; (9)

where

a x; y; zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaxj2 þ jayj2 þ jazj2

q
(10)

is the magnitude of the particle acceleration.

The values of NPL;p and NPL;a are output at y¼ 0 and

06 x6 30 000 at receiver depth zr ¼ 15 m (see Figs. 1

and 2). Additionally, NPL;p and NPL;a are output at y ¼ 0; x
¼ 12 500 and 06 z6 50 (see Fig. 3). Because the wave-

guide parameters are range independent, we have ayjy¼0 � 0

(and ax¼ ar). Reference solutions are obtained by

ac_modes and (in some cases) the widely used Gaussian

beam-based tool BELLHOP. Apart from some discrepancies

with BELLHOP in the near field, all of the solutions agree

very well.

As with many PE-based computational tools, it is

important to properly set up the grids for AMPLE and MPE
as well as to choose the number of modes M taken into

account. Following is the explanation of how these parame-

ters should be chosen.

AMPLE and MPE programs allow one to specify the num-

ber of modes M directly and restrict oneself to waterborne

(guided) modes only. In AMPLE, there is also a possibility to

take all modes with grazing angles within certain interval into

account. In this scenario, we perform computations with water-

borne modes for f � 50 Hz (exact numbers are given in Table

II) while setting M¼ 50 for f ¼ 10 Hz (as there are no water-

borne modes). This explains the discrepancy with BELLHOP in

the near field where higher-order modes also contribute to the

total field, although for x > 200 m, their contribution becomes

negligible as observed in Fig. 1. Clearly, it is not difficult to

eliminate this discrepancy by taking more modes into account.

This would lead to a proportional increase in the computational

time and, therefore, the decision on this matter should depend

on the user’s priorities.

The domain truncation depth H should be large enough

to properly handle attenuation effects in the near field. For

AMPLE and MPE, a good balance between performance and

accuracy is

FIG. 1. (Color online) NPL;pðx; 0; zrÞ are displayed for the frequencies 10 Hz (a), 50 Hz (b), 100 Hz (c), and 1000 Hz (d) as a function of range at the fixed

depth z ¼ zr ¼ 15 m, computed using AMPLE (dashed blue line), MPE (dashed magenta), and reference solutions computed using BELLHOP (dashed-dotted

black) and ac_modes (solid red).
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HðkÞ ¼ 30k;

where k ¼ c=f is the wavelength (this is a heuristic formula

obtained by running convergence tests; however, if neces-

sary, the value can be decreased by adding an absorbing

layer near the truncation depth).

For MPE and AMPLE, it is also important to choose the

appropriate step size over the x and y coordinates for the

solution to converge. In general, the step size can be chosen

for AMPLE as

dx < 3k;

dy ¼ 0:5; k � 15 m;

dy ¼ 1; k � 15 m; (11)

and for MPE as

dx ¼ 0:2k; dy ¼ dx

2
: (12)

The possibility of using large steps in range in AMPLE is a

feature of the SSP method used for the PDMPE integration.

The initial conditions employed by MPE and AMPLE
also differ. As MPE is based on the narrow-angle PE, it uses

the Gaussian starter that provides an appropriate aperture for

this case. On the other hand, AMPLE requires the initial con-

dition to have sufficient aperture to handle wide-angle prop-

agation. For this reason, AMPLE uses a simplified version of

the ray starter (Petrov et al., 2020), based on the ray theory

in the near field. This starter provides an arbitrary aperture

in the horizontal plane.

In low-frequency cases, AMPLE typically produces the

solution in a few tens of seconds (see Table II), whereas for

MPE, it takes a few minutes to handle such cases (partly due

to smaller steps in range, and partly because it spends addi-

tional effort to take mode interaction into account). Both

models become substantially less efficient for frequencies

above 500–600 Hz, e.g., it takes 20 min and ca. 4 h to solve

the 1 kHz case with AMPLE and MPE, respectively.

Note that the computation of particle acceleration

within this approach requires no additional computational

effort, and both programs maintain the same accuracy as for

acoustic pressure when calculating this quantity.

IV. CASE B1

The environment in scenario B1 is the same as that in

Sec. III. However, the goal is to perform the simulation of a

broadband signal emitted by a monopole source. The source

waveform (single airgun) depicted in Fig. 4 was provided by

FIG. 2. (Color online) Particle acceleration NPL;aðx; 0; zrÞ are displayed for the frequencies 10 Hz (a), 50 Hz (b), 100 Hz (c), and 1000 Hz (d) as a function of

range at the fixed depth z ¼ zr ¼ 15 m.
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the workshop organizers (Ainslie et al., 2024). The source

position is the same as that in case A1, and receivers are

located at points r1 ¼ ð30 m; 0; 15 mÞ and r2 ¼ ð3000 m;
0; 15 mÞ (Fig. 5).

The quantities to be computed in this scenario are sound

pulse waveform, p(t), at both receivers and their respective

spectra, P(f). The spectra of the particle acceleration

components jArðf Þj; jAzðf Þj along r and z axes were also

required. By the definition,

Pðf Þ ¼
ð1
�1

pðtÞ exp 2piftð Þdt; (13)

Aðf Þ ¼
ð1
�1

aðtÞ exp 2piftð Þdt; (14)

FIG. 3. (Color online) Acoustic pressure NPL;pðx ¼ 12:5 km; zÞ are displayed for the frequencies 10 Hz (a), 50 Hz (b), 100 Hz (c), and 1000 Hz (d) as a func-

tion of depth at the fixed range x ¼ 12:5 km.

FIG. 4. (Color online) Source function and its spectrum.
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where aðtÞ and Aðf Þ are vectors formed by r and z coordi-

nates of the particle acceleration in the time and frequency

domains, respectively, such that

aðtÞ ¼ arðtÞ; azðtÞð Þ; (15)

Aðf Þ ¼ Arðf Þ;Azðf Þð Þ: (16)

The computations for scenario B1 were also performed

using AMPLE, MPE, and ac_modes. The computational

grid and mode parameters for MPE and AMPLE are shown in

Table III, and full configuration files for AMPLE are avail-

able at GitHub (Petrov and Tyshchenko, 2020).

All computations were performed with the frequency

range from 1 to 1000 Hz. Truncation depth and dz for

ac_modes vary with frequency for better efficiency of a

relatively slow MATLAB code.

In this case, it turned out that MPE outperforms AMPLE
as the former allows to adjust mesh size according to fre-

quency by Eq. (12). The computations with AMPLE were

performed using the same grid for all frequencies, i.e., the

steps were chosen in such a way that they fulfill the condi-

tion (11) for the highest frequency f ¼ 1000 Hz. As a result,

the computations with AMPLE took approximately twice as

much time as those with MPE, e.g., 14 and 5 h, respectively,

for the receiver at x ¼ 3 kmÞ for a single-thread computation

on a personal computer (PC) with an Intel Core i9-13900KF

central processing unit (CPU; Intel, Santa Clara, CA) and

256 Gb random access memory (RAM). However, AMPLE
on the same PC can solve the same problem in less than 1 h

by using multiple computational threads (28 threads).

In this scenario, the receiver at x ¼ 30 m is located in

the near field of the source. Thus, not only waterborne

modes must be taken into account at this point. We

accounted for all modes with the grazing angle of less than

30	 for all frequencies when performing computations using

AMPLE. In the case of MPE, we took into account the first

200 modes for each frequency (unless there were fewer than

200 propagating modes).

The comparisons of the results obtained with the differ-

ent methods are displayed in Figs. 6 and 7. The results for

particle accelerations in Fig. 7 are presented only in the fre-

quency domain. Perfect agreement is also achieved in the

time domain, although the waveforms are quite similar to

the waveform of acoustic pressure in Fig. 6 and we do not

present them here.

V. PROPAGATION PARALLEL TO THE APEX OF THE
WEDGE

In this section, we consider a modified version of the

broadband propagation scenario from Sec. IV. Our goal is to

investigate how accurately AMPLE and MPE reproduce the

field for different angles of bottom slope in the direction

across the propagation path. In fact, this is a short-range

broadband generalization of the well-known wedge bench-

mark scenario (Jensen et al., 2011; Petrov et al., 2020;

Petrov and Sturm, 2016). In the previous work on validation

of both models used in this study, the wedge problem was

successfully solved for single frequencies (e.g., 25 Hz in the

well-known wedge benchmark; Jensen et al., 2011).

However, it is the first time that we investigate the accuracy

of MPE solutions for a relatively broad frequency range

from 10 Hz to 1 kHz. To restrict the number of figures in

this section (as well as in Sec. VI, where downslope propa-

gation is considered), we study only the spectra P(f) at the

receiver at the distance of 3 km from the source. Note that it

is P(f) that is usually required for assessing environmental

impact of a given sound source as this quantity has to be

multiplied by auditory frequency weighting functions of dif-

ferent marine animals. Also, note that good agreement in

P(f) usually implies that the respective signal waveforms

agree well. By contrast, a good agreement of signal wave-

forms could possibly conceal discrepancies in the spectra,

especially at the frequencies over which a relatively small

portion of acoustic energy is distributed but which could

become important after performing auditory frequency

weighting.

FIG. 5. (Color online) Environment in the B1 scenario (a) (Sec. IV) and its generalizations, where across-slope propagation (b) (Sec. V) and downslope

propagation (c) (Sec. VI) are considered. In all cases, the source is located at x¼ 0, y¼ 0, z ¼ zs ¼ 5 m. The receiver is located at x ¼ 3 km, y¼ 0,

z ¼ zr ¼ 15 m.

TABLE III. Configuration for MPE and AMPLE programs in case B1.

AMPLE MPE

Program x ¼ 30 m x ¼ 3 km x ¼ 30 m x ¼ 3 km

M acos
kj

kw
<

p
6

32 200 100

Time (min) 30 840 15 310

H (m) 2750 600
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Assume that the source-receiver line (x axis) is aligned

along the isobath [see Fig. 5(b)], i.e., that water depth h(x,y)

in the area is described by

hðx; yÞ ¼ h0 þ tan a 
 y;

where slope angle a assumes the values of 0.5	, 1	, and 1.5	,
which are typical for continental shelf, and h0 ¼ 50 m, as in

Secs. III and IV.

To validate our models in such a scenario, we compare

the spectra with an analytical solution by the method of

source images (Deane and Buckingham, 1993), which is

considered to be a benchmark for the wedge problem. The

computation results for all three slope angles are shown in

Fig. 8. With logarithmic scaling of the frequency axis, it

might appear that AMPLE and MPE solutions perfectly coin-

cide with the analytical solution. However, a close-up in

Fig. 8(d) reveals that for frequencies above 200 Hz, MPE
exhibits certain inaccuracies (especially for the slope angle

of1.5	), whereas AMPLE shows very good agreement with

source images method up to 1 kHz. Inaccuracy of the MPE
solution at certain high frequencies can be explained by

somewhat unreliable behavior of the Crank-Nicholson-type

numerical scheme, which is used for solving coupled MPEs.

Note, however, that the comparison of received signals

results in excellent agreement of all three methods (we do

not show it here as, in our opinion, spectra in this case are

more informative, whereas time-domain signal comparison

conceals discrepancies at higher frequencies).

Despite noticeable differences between the spectra P(f)
for different slope angles, one can observe from Fig. 8 that,

“on average,” they demonstrate very similar behavior. This

can be confirmed by comparing acoustic energy distribution

at the receiver over decidecade frequency bands [it can be

computed by integrating jPðf Þj2 with respect to the fre-

quency over each band]. This distribution is shown in Fig.

10 for all three slope angle values and both source images

solutions as well as the solution obtained by AMPLE. All six

curves almost agree perfectly with each other.

We, therefore, have shown that although horizontal

refraction in the wedge significantly changes the interfer-

ence pattern of acoustic field, for relatively small distances

of few kilometres from the source, it virtually does not

affect integrals of acoustic energy over decidecade fre-

quency bands that are usually used for the noise impact esti-

mation. Partially, this result justifies the use of efficient

FIG. 6. (Color online) Acoustic pressure waveforms p(t) for the environment depicted in Fig. 5(a) (range-independent case B1) at the receivers at ranges

30 m (a) and 3000 m (b) and their respective spectra P(f) [(c), (d)] computed using AMPLE (dashed blue), MPE (solid red), and ac_modes (dashed-dotted

magenta) are shown.
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modern methods, such as SOPRANO (Sertlek et al., 2019),

that do not take 3D effects into account for noise estimation

purposes.

VI. DOWNSLOPE PROPAGATION

In this section, we consider downslope broadband prop-

agation, i.e., for the bathymetry described by the function

hðx; yÞ ¼ h0 þ tan a 
 ðx� L=2Þ;

where a¼ 0.5	, 1	, and 1.5	, L ¼ 3 km, and h0 ¼ 50 m (i.e.,

average water depth along the path of length L is exactly the

same as in previous cases). In this section, we also assume

that the receiver depth is 10 m (not 15 m as previously).

Note that as a result of the reciprocity principle, P(f) are

exactly the same for positive and negative values of slope

angle a, i.e., for upslope and downslope propagation. The

respective comparison was performed as a consistency

check for each model involved in this study (figures are not

included here). Again, we restrict our attention to the com-

putation of acoustic pressure spectra P(f), as all other quanti-

ties (pulse waveform, particle accelerations, etc.) can be

computed from it reliably and without any additional effort.

In Fig. 9, we present the simulation results for the

downslope propagation case. As in Sec. V, they are vali-

dated by the comparison with the source images solution.

As can be observed from Fig. 9, for the slope angle of 0.5	,
MPE and AMPLE demonstrate perfect agreement with the

reference solution [see Fig. 9(a)]. For a ¼ 1	 AMPLE is rela-

tively accurate (modulo some small discrepancies) only for

f > 40 Hz [Fig. 9(b)], while for a¼ 1.5	, the agreement can

be characterized as, at best, qualitative for the frequencies

f > 100 Hz [Fig. 9(c)]. This result highlights the role of

mode coupling, which is adequately taken into account by

MPE model and completely neglected in AMPLE. Indeed,

MPE perfectly agrees with the source images solution for

low frequencies (i.e., for f < 200 Hz). Certain discrepancies

and outliers at higher frequencies indicate that the respective

numerical scheme becomes somewhat unreliable for

f > 300–400 Hz [see also close-up in Fig. 9(d)].

Thus, we can conclude that mode coupling is relatively

insignificant for bottom slope angles below a < 1	, and

AMPLE can handle such problems accurately and efficiently.

At the same time, when the path is aligned along the depth

gradient and the slope angle a > 1	, it is necessary to take

the mode interaction into account, and the adiabatic horizon-

tal refraction equations [Eq. (3)] are no longer adequate.

FIG. 7. (Color online) The spectra of the horizontal [(a), (b)] and vertical [(c), (d)] components (i.e., jArðf Þj and jAzðf Þj) of particle acceleration at the

receivers at ranges 30 m and 3000 m are shown.
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MPE is designed to deal with this effect, and it handles it

very well for sufficiently low frequencies.

Let us now consider how the energy distribution over

decidecade bands changes as the bottom slope along the

path increases. The corresponding plots are shown in Fig.

10(b) for AMPLE and the reference solution by the source

images. It is clear that, unlike in the case of across the slope

propagation, water depth variations along the path (for the

same fixed average value h0) significantly increase transmis-

sion loss. It is also clear that for a¼ 0	, AMPLE reproduces

the distribution very accurately, whereas for larger slope

angles, the agreement is reasonably good only for suffi-

ciently high frequencies.

VII. CONCLUSION AND DISCUSSION

In this study, we discuss the solution of the test prob-

lems A1 and B1 that were proposed to the participants of

the JAM Workshop 2022. Both of them are typical shallow-

water sound propagation scenarios with the same geoacous-

tic parameters of the environment, and the key difference is

that B1 deals with a broadband source. The problems were

solved by the two models MPE and AMPLE, based on the

MPEs theory developed at our laboratory at Pacific

Oceanological Institute (Vladivostok, Russia) in the past

10 years. The configuration of both models is described, and

the computational times required to handle both cases are

reported. It is revealed that both models reliably reproduce

the reference solutions for the original range-independent

scenarios (during the workshop, the results were also veri-

fied against many other models used by other participants,

and no major discrepancies were observed). We also study a

modified B1 problem with the sloping bottom for the cases

when depth gradient is aligned along and across the propa-

gation path. In the former case, normal mode coupling

comes into play for the slope angle a > 1	, and the accuracy

of AMPLE solution becomes insufficient for sound frequen-

cies at which all or almost all waterborne modes encounter

their cut-off depths at certain points of the path. In the case

of propagation across the bottom slope, AMPLE confidently

handles all tilt angles as in such scenarios, primary role is

played by the horizontal refraction that is very accurately

simulated by MPEs. On the other hand, MPE shows very

accurate results for all bottom slope angles across and along

the path for frequencies up to 250–300 Hz. For higher fre-

quencies, standard (non-SSP) MPE marching scheme,

FIG. 8. (Color online) Acoustic pressure spectra P(f) at x ¼ 3 km, y¼ 0, z ¼ 15 m computed using AMPLE (dashed blue), source images (Deane and

Buckingham, 1993) (solid red), and MPE (dashed-dotted magenta) are shown for bottom slope angles across the path (a) a ¼ 0:5	, (b) a ¼ 1	, and (c)

a ¼ 1:5	. (d) shows a close-up view of the case a ¼ 1:5	 at medium frequencies.
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however, requires step sizes that are too small for practice

and, in general, becomes somewhat unreliable.

Obviously, the models based on the normal modes the-

ory are particularly efficient for the scenarios in which the

field can be accurately described by a few modes. For such

cases, normal modes, in general, and MPE theory, in partic-

ular, work as model order reduction tools. This criterion is

met in the cases involving frequencies from 50 to 500 Hz in

FIG. 9. (Color online) Acoustic pressure spectra P(f) at x ¼ 3 km, y¼ 0, z ¼ 10 m computed using AMPLE (dashed blue), source images (Deane and

Buckingham, 1993) (solid red), and MPE (dashed-dotted magenta) are shown for bottom slope angles along the path (a) a ¼ �0:5	, (b) a ¼ �1	, and (c)

a ¼ �1:5	. (d) shows a close-up view of the case a ¼ �1	 at medium frequencies.

FIG. 10. (Color online) Signal energy distribution over decidecade frequency bands is shown for the cases of across-slope propagation (a) and downslope

propagation (b).
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case A1 and for the far-field receiver in case B1. Under

these conditions, MPE-based models can significantly out-

perform computational tools based on 3D PEs (Petrov et al.,
2020; mainly because of quasi-separation of variables by

normal mode expansion and the powerful SSP method). For

complicated 3D environments, where it is hard to reliably

identify all eigenrays connecting the source and the receiver,

MPE could be expected to be more robust than the methods

based on the ray theory and Gaussian beams. On the other

hand, for a near-field receiver, virtually any other approach

(including ray theory, traditional PEs, and wavenumber inte-

gration) would surely outperform MPEs. Our approach is

also somewhat inefficient in the case of frequencies for

which the waveguide admits no waterborne modes (e.g., for

10 Hz in the considered case). In such situations, the field

can be accurately represented only by a relatively large

number of “bottom” modes approximating branch line inte-

gral corresponding to continuous spectrum of the Pekeris

waveguide (Jensen et al., 2011).

It is important to stress that the efficiency and accuracy

of the MPE-based models reported in this study will be

retained in much more complicated 3D scenarios of sound

propagation in shallow water. In particular, MPE and AMPLE
can handle inhomogeneous bathymetry and sound speed

profiles in the water column at almost no additional compu-

tational cost (Manul’chev et al., 2022). Arguably, in many

situations, it could also be important to take bottom elastic-

ity into account when performing sound field modeling for

the purposes of environment impact assessment. It can be

performed with the framework of MPEs using the approach

outlined in Kozitskiy (2022), although additional research

efforts in this direction are required.

We also would like to emphasize the findings of this

study on the relative importance of 3D effects (horizontal

refraction) and mode coupling for noise simulation prob-

lems. Although the former could significantly change signal

waveform and interference patterns of its time-harmonic

components, at distances of few kilometres from the source,

its effect fades away after the averaging over decidecade

frequency bands (which is often performed for noise moni-

toring purposes). Therefore, for the distances similar to

those in the B1 scenario, the use of 2D propagation models

can be justified by this fact. On the other hand, for longer

distances (e.g., 10 km), it has been previously shown that

not only a full 3D model is required, but also it must have

sufficient wide-angle capabilities to properly handle the

effect of horizontal refraction (Manul’chev et al., 2022).

The simulation results presented above also indicate that

adiabatic sound propagation models are adequate for

shallow-water environments with typical bottom slope

angles a < 1	 (within the frequency range from 10 Hz to

1 kHz). For greater angles, it is necessary to take mode inter-

action into account as well (otherwise, the results could be

very inaccurate even after averaging over frequency bands).

Although the current version of AMPLE does not have this

capability, it can be implemented using a generalized SSP

method proposed in Petrov et al. (2024).
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