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Abstract The Arctic region is experiencing more rapid climate changes than the other parts of the world and
serves as a sink for semi‐volatile persistent organic pollutants, such as polycyclic aromatic hydrocarbons
(PAHs), which can be utilized as molecular markers for pyrogenic carbon, such as black carbon (BC). As the sea
ice retreats and increased terrestrial inputs with widespread wildfires, the PAH concentrations in the Arctic
Ocean are rising. In this study, the sources and fates of PAHs together with BC in surface sediments from the
East Siberian Arctic Shelf (ESAS) were analyzed. Positive matrix factorization (PMF) elucidated a mixed
petrogenic and pyrogenic sources and distinct PAH fates associated with diverse input pathways including
coastal permafrost erosion contribution (∼30%), petrogenic‐related emission (∼34%), fossil fuel combustion
(∼26%), and biomass burning (∼10%). Correlation analysis indicated that BC plays a key role in affecting the
behavior and fates of PAHs. In the Chukchi Sea, PAHs are closely associated with soot‐BC, whereas in the
Laptev Sea (LS) and west East Siberian Sea (W‐ESS), they exhibit a coupling process with char‐BC. The
presence of these carbonaceous materials in the sediments of CS is likely influenced by atmospheric deposition
and biological activity, whereas the LS and W‐ESS regions are mainly affected by long‐distance river transport
and direct deposition from coastal permafrost. As global warming continues, permafrost thawing induces the
remobilization and retranslocation of PAHs, thereby becoming a significant PAH contributor and input pathway
in the rapidly changing Arctic coastal margin.

Plain Language Summary The Arctic region is experiencing rapid climate changes, such as
reducing sea ice, thawing permafrost, and increasing wildfires. These changes are raising the levels of semi‐
volatile pollutants such as polycyclic aromatic hydrocarbons (PAHs) in the Arctic coastal margins, with the
potential for the region to become a significant reservoir of sedimentary PAHs. In our study, we examined the
large‐scale distribution and fates of PAHs and black carbon (BC) across the East Siberian Arctic Shelf (ESAS),
the world's largest shelf system. We discovered that PAHs have mixed sources, including both petrogenic and
pyrogenic origins. We also observed differences in how PAHs were transported and sequestrated in coastal
versus open sea areas. In the western ESAS, PAHs and BC are mainly influenced by terrestrial inputs such as
river discharge and coastal permafrost erosion. In contrast, in the eastern open‐sea regions, they are primarily
constrained by atmospheric transport and biological activity are the primary influencing factors. The significant
emissions from thawing permafrost along the coasts highlight the growing importance of permafrost‐related
erosion as a significant contributor of PAHs in the Arctic Ocean, particularly in the context of future warming.

1. Introduction
Recently, warming has been accelerating faster in the Arctic than in other parts of the world (Rantanen
et al., 2022), potentially making the region the most vulnerable to climate change (Meredith et al., 2019; Terhaar
et al., 2021). This vulnerability is characterized by increasing coastal permafrost erosion (Schuur et al., 2022),
decreasing sea ice (Olonscheck et al., 2019) and consequent enhancement of ocean primary productivity (Arrigo
et al., 2012). Furthermore, as permafrost continues to degrade, wildfires occur more frequently in boreal forests

RESEARCH ARTICLE
10.1029/2024JC021234

Special Collection:
The Arctic: An AGU Joint
Special Collection

Key Points:
• Sedimentary polycyclic aromatic

hydrocarbons (PAHs) in the East
Siberian Arctic Shelf (ESAS) have a
mixture of petrogenic and pyrogenic
sources with distinct input pathways

• Permafrost erosion serves as a
significant input pathway and PAHs
contributor in the rapidly changing
Arctic coasts

• Black carbon plays a key role in the
behavior and sequestration of
pyrogenic PAHs in the Arctic coastal
margins

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
L. Hu,
hulimin@ouc.edu.cn

Citation:
Yu, W., Hu, L., Zhang, Y., Du, J., Bai, Y.,
Lin, T., et al. (2024). Sources and fates of
sedimentary polycyclic aromatic
hydrocarbons in the East Siberian Arctic
Shelf: Implications for input pathways and
black carbon constraint. Journal of
Geophysical Research: Oceans, 129,
e2024JC021234. https://doi.org/10.1029/
2024JC021234

Received 23 APR 2024
Accepted 17 OCT 2024

Author Contributions:
Conceptualization: Limin Hu
Data curation: Wenxiu Yu
Formal analysis: Wenxiu Yu, Limin Hu,
Yuying Zhang, Jiazong Du
Funding acquisition: Limin Hu,
Alexander Bosin, Anatolii Astakhov
Investigation: Limin Hu, Zhigang Guo
Methodology: Yazhi Bai
Project administration: Limin Hu,
Alexander Bosin, Anatolii Astakhov
Resources: Limin Hu, Xuefa Shi
Supervision: Limin Hu
Validation: Wenxiu Yu, Limin Hu,
Yuying Zhang, Jiazong Du, Yazhi Bai,

© 2024. American Geophysical Union. All
Rights Reserved.

YU ET AL. 1 of 16

https://orcid.org/0000-0002-0669-3456
https://orcid.org/0000-0002-8677-4992
https://orcid.org/0000-0002-3994-2623
https://orcid.org/0000-0001-8204-8021
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-9291.ARCTICJOINT
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169-9291.ARCTICJOINT
mailto:hulimin@ouc.edu.cn
https://doi.org/10.1029/2024JC021234
https://doi.org/10.1029/2024JC021234
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024JC021234&domain=pdf&date_stamp=2024-10-31


and tundra across Siberian ecosystems (Tomshin & Solovyev, 2022), releasing large amounts of pyrogenic carbon
and permafrost carbon into the coastal margins (Sparkes et al., 2018). These changes have led to increasing
concern about the various climate‐related feedback (Talucci et al., 2022). Polycyclic aromatic hydrocarbons
(PAHs), a class of semi‐volatile persistent organic pollutants (POPs), are typical molecular markers of pyrogenic
carbonaceous materials (Balmer et al., 2019; Laender et al., 2011; Zhang et al., 2023). PAHs are typically released
into the environment from both pyrogenic and petrogenic sources (Saha et al., 2009; Yunker et al., 2002). They
possess the capability to reach the Arctic region via long‐range atmospheric or oceanic transport as well as local
emissions (MacDonald et al., 2000). Despite reductions in global emissions, PAHs present in the Arctic air have
not exhibited a notable downward trend (Yu et al., 2019). In the context of Arctic warming, increasing land‐based
inputs such as river discharge and coastal erosion, permafrost retreat, and more frequent wildfires further
contribute to the supply of PAHs in the Arctic (Hung et al., 2022; Song et al., 2023; Yunker et al., 2011).
Moreover, the rapid loss of sea ice coupled with enhanced biological pump process could facilitate PAHs sinking
through the water column, promoting their accumulation in bottom sediments (Dai et al., 2019; Galbán‐Malagón
et al., 2012; Ma et al., 2011). These processes profoundly impact the biogeochemical behaviors of PAHs in polar
environments.

After their release into the environment, PAHs exhibit strong hydrophobicity and corresponding affinity for
particles (Accardi‐Dey & Gschwend, 2002; Cornelissen et al., 2005). Previous research studies have shown that
particle sinking and export are the primary mechanisms for removing PAHs from Arctic seawater, whether these
PAHs from air–sea exchange, dry and wet deposition, riverine input, or permafrost thaw (Ke et al., 2017; Lin
et al., 2022; Liu et al., 2021). Therefore, marine sediments serve as the ultimate sink for these particle‐reactive
organic compounds (Suman et al., 1997). Previous studies have revealed that PAH compounds are absorbed
into amorphous organic matter (Huang et al., 1997; Lambert, 1968). In many situations, they also tend to be
strongly adsorbed onto condensed carbonaceous materials such as black carbon (BC) (Cornelissen et al., 2005).
BC, a byproduct of either the combustion of biomass (known as char) or fossil fuels (commonly termed soot), is
an important carbonaceous sorbent (Lohmann et al., 2005; Schmidt & Noack, 2000). Many studies have revealed
associations between PAHs and BC, particularly in polar environments such as the Swedish shelf and Pan‐Arctic
rivers (Elmquist et al., 2008; Sánchez‐García et al., 2010), emphasizing the constraint effects of pyrogenic BC on
PAH occurrences. The adsorption capacity of the BC fraction can constraint the PAHs occurrences and pres-
ervation in sediments, thereby helping to elucidate the behaviors and fates of PAHs in various environmental
matrices (Jonker & Koelmans, 2002).

The East Siberian Arctic Shelf (ESAS) is a highly vulnerable region, characterized by intense sea ice melting,
permafrost degradation, and altered vegetation in the context of rapid Arctic climate change (Thomas et al., 2022);
these changes can significantly impact the behaviors and fates of carbonaceous materials. Constrained by limited
land‐based input due to the absence of large‐scale rivers and high primary productivity within the eastern ESAS
(i.e., the Chukchi Sea) (Viscosi‐Shirley et al., 2003), long‐range atmospheric delivery and biological processes
(biodegradation, adsorption, and biological pump) can significantly affect the deposition of hydrophobic PAHs
(González‐Gaya et al., 2019; Liu et al., 2021; Nizzetto et al., 2012). Conversely, in the western ESAS, terrestrial
inputs from river discharge and coastal permafrost erosion are important sources of PAHs and BC (Petrova
et al., 2008; Salvadó et al., 2017; Vonk et al., 2012; Yunker et al., 2011). Permafrost thaw slumping has driven
PAH compounds into the sediments, as reported in the Mackenzie Delta (Thienpont et al., 2020). However, few
studies have been conducted on the Eurasian Arctic margins, which were previously poorly recognized but maybe
an important source of remobilized PAHs (Lin et al., 2022). The actual export of these PAHs from coastal
permafrost, as well as their composition and fate on the adjacent Siberian Arctic shelf, remains unclear. There is
only limited evidence that petrogenic hydrocarbons in the central Arctic Ocean are associated with substantial
eroded coal transport from the Lena River watershed or the Laptev Sea (LS) coast (Boucsein et al., 2002; Yunker
et al., 2011). Consequently, explorations of PAH spatial heterogeneity, sources, and coastal fates, as well as the
role of BC in determining the transport and fate of PAHs, are important for identifying the source and sink
processes of these carbonaceous components in a region that experiences some of the most intense land‐sea
interactions globally.

In this work, we examined the occurrences and biogeochemical behaviors of PAHs and two subtypes of BC in
sediments from the ESAS. We quantitatively analyzed their spatial heterogeneity and coastal fates and linked
these results to biological inputs and permafrost erosion processes across the broad and shallow Arctic coastal
margins.
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2. Materials and Methods
2.1. Regional Setting and Sampling

The ESAS is one of the largest shelf systems in the world, spanning up to 800 km wide with a mean depth of 50 m
(Stein & Macdonald, 2004). A primary feature of coastal regions along the ESAS is permafrost, typically con-
sisting of late Pleistocene ice complex deposits (ICD, also known as Yedoma) (Figure 1) (Günther et al., 2013;
Lantuit et al., 2013). The ESAS receives extensive terrestrial carbon inputs from rivers and permafrost thawing; in
particular, riverine and coastal erosion release a large amount of old carbon from permafrost (Günther et al., 2013;
Vonk et al., 2012). The LS receives large amounts of freshwater (approximately 745 km3 yr− 1) mainly transported
by the Lena River (Semiletov et al., 2000), although most carbon inputs arise from coastal erosion of ICD
permafrost (Semiletov et al., 2012; Vonk et al., 2012). Enhanced sea ice melting and freshwater input via the
Pacific inflow (PI) stimulate phytoplankton productivity, making the Chukchi Sea (CS) one of the most pro-
ductive regions in the Arctic marginal seas (Payne et al., 2021). The East Siberian Sea (ESS) consists of two
contrasting physical and biogeochemical regimes. The eastern ESS (E‐ESS, 160°E− 180°E) is influenced by the
PI, resulting in relatively high primary productivity (similar to productivity in the CS), whereas the western ESS
(W‐ESS, 140°E− 160°E) is controlled by riverine inputs and severe coastal erosion at a rate of 3–4 m yr− 1; the
erosion‐prone ICD permafrost serves as the main sediment source (Lantuit et al., 2012; Semiletov et al., 2005).

The locations of sediment sampling sites in the ESAS are illustrated in Figure 1. In total, 74 surface sediment
samples (0–1 cm depth) were collected using a stainless‐steel box corer during joint cruises in 2016 (Lv77) and
2018 (Lv83) onboard R/V Akademik M.A. Lavrentiev. Sediment samples were wrapped in aluminum foil and
stored at − 20°C until analysis.

Figure 1. Map showing the study area in the Arctic Ocean and the East Siberian Arctic Shelf, with rivers marked in blue and ICD in green. Coastal erosion rates are
displayed by yellow, orange, and red lines (Lantuit et al., 2012). Black arrows represent typical currents, following Tesi et al. (2016): BG, Beaufort Gyre; TPD, trans‐
polar drift; PI, Pacific inflow; SCC, Siberian Coastal Current. Arctic lignite and bituminous coal deposits are based on the 1978 Polar Regions Atlas (Yunker
et al., 2011). Wildfire locations in major Siberian watersheds from 2016 to 2018 are depicted as red dots (https://firms.modaps.eosdis.nasa.gov/).
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2.2. Analytical Procedures

The procedure for PAH analysis, as well as the quality assurance and quality control (QA/QC) protocols, followed
the methods described by Mai et al. (2003) and Lin et al. (2011). Briefly, homogenized sediment samples
(approximately 10 g each) were first spiked with a mixture of five deuterated PAHs (naphthalene‐d8,
acenaphthene‐d10, phenanthrene‐d10, acenaphthene‐d12, and perylene‐d12) recovery surrogate standards, and then
subjected to ultrasound extraction with dichloromethane. The extracts were concentrated and fractionated using a
silica‐alumina (1:1) column. The target compounds are the 16 priority PAHs proposed by the U.S. EPA including
naphthalene (Nap), acenaphthylene (Ac), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene
(Ant), fluoranthene (Fluo), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF),
benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3‐cd]pyrene (InP), dibenz[a,h]anthracene
(DBA), and benzo [ghi]perylene (BghiP), along with methylphenanthrene (M‐Phe), perylene and retene. Hex-
amethylbenzene was added as an internal standard. Each mixture was reduced and subjected to analysis via gas
chromatography with a mass‐selective detector (Agilent series 7890B mass spectrometer interfaced with a 5,977
series gas chromatograph) equipped with an HP‐5 capillary column (25 m × 0.25 mm inner diameter; film
thickness, 0.25 μm).

For QA/QC, procedural blanks, standard‐spiked blanks, standard‐spiked matrices, and duplicate samples were
analyzed simultaneously. The limits of detection for individual PAHs ranged from 0.2 to 2 ng/g for 10 g sediment
samples (Mai et al., 2003). Procedural blanks contained no detectable amounts of the target PAH compounds. The
PAH recoveries in the standard‐spiked matrices ranged from 78% to 93%; paired duplicate samples demonstrated
agreement to within 15% of the measured values (− 10). The mean surrogate recoveries were 65 ± 11% for
naphthalene‐d8, 60± 6% for acenaphthene‐d10, 98± 14% for phenanthrene‐d10, 102± 14% for chrysene‐d12, and
99 ± 10% for perylene‐d12. Concentrations reported here were not corrected for recovery.

For BC analysis, wet‐chemical pretreatment combined with the thermal optical reflectance (TOR) detection
method of Han, Cao, Chow, et al. (2007) was adopted. Briefly, thawed, freeze‐dried, and homogenized
(<80 mesh) sediment samples were acid‐treated to effectively remove carbonates, silicates, and secondary
minerals; the residues were then filtered through precombusted quartz fiber filters to achieve an even distribution.
The filters were analyzed for BC on a DRI Model 2001 thermal/optical carbon analyzer in accordance with the
IMPROVE_A protocols. Detailed BC analytical procedures were described by Fang et al. (2015). For QA/QC,
10% of filters were randomly selected with two punches per filter analyzed for BC. The measured BC concen-
tration had a relative standard deviation (RSD) ranging from 1% to 10%, averaging 4%, indicating an even
distribution. Blank and replicate samples and standard reference material (NIST SRM‐1941b) were analyzed at a
rate of one per 10 samples. Blank samples (n= 19) yielded 0.0± 0.0 μg/cm2 for BC, and the RSD for 19 replicates
ranged 0%− 13%, averaging within 4%. The measured BC concentration in SRM‐1941b was 10.6 ± 1.9 mg/g
(n = 19), which was well in accordance with the reported values (Cong et al., 2013; Hammes et al., 2007; Han,
Cao, An, et al., 2007). More detailed procedures regarding the QA/QC of BC are available in Text S1 of Sup-
porting Information S1.

The analytical methods of Hu et al. (2009) were utilized for total organic carbon (TOC) and grain size. Replicate
analysis of one sample (n= 6) provided a precision of±0.05 wt.% for TOC. For grain size, the relative error of the
duplicate samples was <3% (n = 6).

2.3. Principal Component Analysis (PCA)

PCA, a multivariate analytical tool, was used to determine sample distributions and assess relationships among
measured parameters. Prior to analysis, non‐detectable values were replaced with concentrations equal to one‐half
of the method detection limits. PCA was performed using Origin 2023b (OriginLab Corporation) to extract the
principal components (PCs) based on the correlation matrix.

2.4. Positive Matrix Factorization (PMF) Modeling

PMF is a PCA‐based receptor model with non‐negative constraints that involves the solution of quantitative
source apportionment equations with oblique solutions in a reduced dimensional space. The detailed concept and
application of PMF source apportionment are described in the EPA PMF 5.0 Fundamentals and User Guide
(www.epa.gov/heasd/products/pmf). In principle, the PMF model is based on the following equation,
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Xij =∑
p

k=1
AikFkj + Rij

where Xij is the concentration of the jth congener in the ith sample of the original data set; Aik is the contribution
of the kth factor to the ith sample; Fkj is the fraction of the kth factor arising from congener j; and Rij is the residual
between the measured Xij and the predicted Xij using principal components.

Q =∑
n

i=1
∑
m

j=1
(
Xij − ∑p

k=1AikFkj
Sij

)

2

where Sij is the uncertainty of the jth congener in the ith sample of the original data set containing m congeners
and n samples; Q is the weighted sum of squares of differences between the PMF output and the original data set.
One of the tasks of PMF analysis is minimizing the Q value.

Before PMF analysis, the concentration file and corresponding uncertainty file were input into the model. In this
study, an uncertainty value of 20% for PAHs was adopted based on analyses of replicate samples and standard
reference material (Mai et al., 2003). In this study, the input data for PMF analysis were 13 PAHs results from 74
sediment samples. Because Nap, Ac, Ant, and DBA were lower than their method detection limits (MDL) in the
majority of samples, they were excluded from the initial PMF analysis. The 4‐factor solution produced a Q value
of 897.4, which is very close to the theoretical value of 923.4 (Figure S1 in Supporting Information S1).

3. Results and Discussion
3.1. Occurrences and Spatial Variations of PAHs and BC in the ESAS

The total concentrations of 16 PAHs in ESAS sediments ranged from 3.9 to 69 ng/g dry weight (dw), with a mean
of 27.6 ng/g dw. The PAH composition was dominated by low‐molecular‐weight (LMW) PAHs, which explained
64.7% of the total variance, with the Phe being the primary component. The concentrations of M‐Phe in the ESAS
sediments ranged from 1 to 42 ng/g dw, exhibiting a spatial heterogeneity, with higher abundance observed in
both nearshore and open sea area (Figure S2 in Supporting Information S1). The BC content ranged from 0.1 to
2.3 mg/g dw (with a mean of 1 mg/g dw), corresponding to 15%–40% of TOC; char‐BC accounted for more than
70% of the total BC. The abundances of PAH components were substantially lower than observations in other
Arctic region sediments, such as those of the Barents Sea (2,109 ± 1,640 ng/g dw) and Svalbard inshore region
(8,967 ± 5,167 ng/g dw) (Dahle et al., 2006), probably because of proximity to continental sources and the
inclusion of alkyl‐PAHs in ∑PAHs. Moreover, PAH contents in this work were comparable to or slightly lower
than previous results in the LS and ESS (38–223 ng/g dw), CS (52.4–91.3 ng/g dw), and five Siberian rivers
(23.8–129 ng/g dw) (Chen et al., 2018; Elmquist et al., 2008; Lakhmanov et al., 2022).

Spatially, the highest PAH concentrations were observed in the CS and E‐ESS shelf break regions, whereas lower
levels were present around the New Siberian Islands and the Kolyma River mouth (Figure 2a). Lin et al. (2020)
observed a sharp increase in the concentration of PAHs in the northern CS, particularly in the vicinity of the shelf
breaks in the Beaufort Sea. Additionally, high PAH levels along the marginal E‐ESS shelf break align with the
distribution of the ice edge as delimited by IP25 (ice proxy lipid biomarker with 25 carbons) and brassicasterol
records (Figure 2a). High concentrations of brassicasterol are present in the offshore area around 74°N of the ESS
with a sharp decrease in the northern ESS (Figure S3 in Supporting Information S1; Su et al., 2022). Therefore,
biological processes in these regions with high settling efficiency may be the main drivers of the accumulation and
precipitation of hydrophobic, lipophilic PAHs into sediments (Liu et al., 2021; Nizzetto et al., 2012; Wan
et al., 2022). Moreover, the increase in primary production associated with recent warming may exert further
constraints on PAH behavior in the Siberian Arctic region.

In addition to biological influences, the sedimentation regime and δ13C values indicated dominant terrigenous
inputs in the western coastal ESAS driven by riverine runoff and coastal permafrost erosion (Günther et al., 2013;
Myers‐Pigg et al., 2015; Vonk et al., 2012). The highest BC content and a relatively high concentration of PAHs
were observed at the mouths of the Lena and Yana Rivers, with prominent decreases were evident on the outer
shelf, suggesting a significant effect of runoff input (Elmquist et al., 2008; Petrova et al., 2008). It has been
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reported that the prevailing cold climate has helped the preservation and accumulation of PAHs and other POPs
(e.g., polychlorinated biphenyls) in permafrost (Ren et al., 2019; Thienpont et al., 2020; Wei et al., 2024; Zhu
et al., 2023). This indicates that the widespread permafrost in Siberian Arctic margins could be an important
potential reservoir of PAHs and BC (Guo et al., 2004; Salvadó et al., 2017).

3.2. Composition and Sources Identification of PAHs

3.2.1. Diagnostic Ratios

Diagnostic ratios of PAH species with the same isomeric structure are widely used to determine PAH origins
(Yunker et al., 2002). PAH ratios such as Fluo/(Fluo + Pyr) and InP/(InP + BghiP) from this study, along with

Figure 2. Spatial distributions of 16 PAHs (a), LMW PAHs (b), high‐molecular‐weight (HMW) PAHs (c), BC (d), char (e),
soot (f), BC/TOC (g), and char/soot (h) in the ESAS. LMW: sum of 2‐ and 3‐ring PAHs, HMW: sum of 4‐, 5‐, and 6‐ring
PAHs.
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previous literature, are presented in Figure 3. These findings suggested a
mixed contribution of pyrogenic and petrogenic inputs (Lakhmanov
et al., 2022; Lin et al., 2020). In the ESS, increasing trends of both Fluo/
(Fluo + Pyr) and InP/(InP + BghiP) ratios were observed as samples moved
from nearshore region to the outer shelf (Figure 3). The relatively high pro-
portion of petrogenic PAHs in the nearshore region may be due to land‐based
terrestrial inputs from rivers and coastal permafrost release, whereas pyro-
genic PAHs in the offshore area were mainly derived from long‐range at-
mospheric transport (Lin et al., 2020; Yunker et al., 2011). For example, it has
been reported that wildfires in Russia, along with air pollutants from Eurasia
transmitted to the Arctic during the cold seasons, have contributed to the
levels of pyrogenic PAHs in the Arctic atmosphere (Ding et al., 2007; Hallsal
et al., 1997; Kharuk et al., 2022).

3.2.2. Composition and Sources of PAHs Based on PCA

The PAHs present in the Arctic shelf sediments have undergone long‐range
transport via the atmosphere, ocean currents, and rivers (Sofowote
et al., 2011; Zhang et al., 2023). Additionally, these transport process could be
further modulated by local inputs such as coastal erosion and biological
processes (Lin et al., 2022; Liu et al., 2021; Yunker et al., 2011). To examine

the PAH sources and their various input pathways within this large‐scale shelf system, monomer PAH compounds
(including perylene), as well as parameters such as char, soot, TOC, and opal, were conducted for PCA analysis.
As shown in Figure 4, three different clusters were identified based on the first three PC scores of each sample,
representing distinct input pathways. The first three PCs (PC1, PC2, and PC3) explained 43.9%, 14.9%, and
11.0% of the total variance, respectively. PC1 was heavily weighted by 4‐ring PAHs (such as Chr, BaA, Fluo, and
Pyr), with moderate loading for 5+ 6 ring PAHs (Figure 4a), suggesting a pyrogenic origin. Samples from the CS
exhibited high PC1 loadings, and these HMW PAH components likely originated from atmospheric transport and
deposition (Ma et al., 2017; Sofowote et al., 2011). PC2 was highly loaded in perylene, char, soot, and TOC,
particularly corresponding to the high scores observed in samples from the western ESAS (e.g., the LS)
(Figures 4a and 4b), suggesting a strong input from the riverine discharge. Perylene, a soil‐derived terrestrial
component formed at the stage of the early diagenesis of biogenic components (Hanke et al., 2019), dominated the
sediments in the Lena River estuarine and coastal areas (Figure S5a in Supporting Information S1), indicating a
direct influence from fluvial input (Petrova et al., 2008). Moreover, a significant positive correlation between BC
and TOC (r2= 0.87, p< 0.001) was also observed in the Laptev Sea, accompanied by a deficit of δ13C occurrence,

Figure 3. Ratios of InP/(InP+ BghiP) versus Fluo/(Fluo+ Pyr) in the ESAS.
Black and red ellipses represent nearshore and outer shelf samples,
respectively. Diamonds and triangles represent the stations of Lin
et al. (2020) and Lakhmanov et al. (2022), respectively.

Figure 4. Loadings of the PCA model of 16 PAHs and other parameters and corresponding sample scores of three PCs.
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further emphasizing the dominance of land‐based input (Figures S5 and S6 in Supporting Information S1; Vonk
et al., 2012; Günther et al., 2013). PC3 was strongly correlated with LMW PAH homologs, such as Flu, Ace, Phe,
and Ac (Figure 4b). Notably, samples from W‐ESS showed relatively high PC3 scores, potentially indicating a
generic petrogenic contribution related to coastal permafrost erosion (Thienpont et al., 2020; Yunker et al., 2011;
Vasil'chuk et al., 2020). Besides, in addition to the high presence of M‐Phe in the nearshore area (Figure S2 in
Supporting Information S1), their high abundance in the open sea area may also be associated with the biological‐
related process (Ma et al., 2020).

3.3. Evaluation of the Coastal Fates of PAHs in the ESAS Through PMF Modeling

3.3.1. PMF Modeling

PMF can quantitatively estimate the relative contributions of PAHs from specific source categories (Stout &
Graan, 2010). After the testing of 3–7 factors, a four‐factor solution was adopted based on comparisons with
reported PAH source profiles within the Arctic (Lin et al., 2020; Vasil'chuk et al., 2020; Ji et al., 2019; Ma
et al., 2017; Sofowote et al., 2011). The correlation between the estimated and measured concentrations was
almost unity, suggesting that the measured concentrations were adequately explained by these four factors.

Factors 1 and 2 were dominated by LMW PAHs, especially Phe and Flu (Figures 5a and 5b); this petrogenic
profile in the Arctic environment may be related to oil and gas activities (AMAP, 2010; Harvey et al., 2014; Ma
et al., 2017; Yunker & MacDonald, 1995) and/or the contributions of eroded source rocks rich in organic matter
and coal deposits (Fahl et al., 2003; Lin et al., 2020; Yunker et al., 2011). The profile of factor 3 was consistent
with generic fossil fuel combustion emissions (including coal, oil, and gasoline engines) (Liu et al., 2003;
Sofowote et al., 2011; Yunker et al., 2002), characterized by high levels of BaA, Chr, BbF, BkF, InP, and BghiP
with moderate loading for Fluo (Figure 5c). Factor 4 was identified as biomass burning due to the high loading of

Figure 5. Comparisons of PMF model derived four‐factor profiles with published results: (a) permafrost‐related input
(Vasil'chuk et al., 2020); (b) oil and gas activities (Ma et al., 2017, 2020); (c) fossil fuel combustion (Sofowote et al., 2011);
(d) biomass burning (Sofowote et al., 2011).
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Pyr (Figure 5d), which serves as a marker of wood or grass combustion (Sofowote et al., 2011; Yu et al., 2019).
Nevertheless, considering that Pyr could originate from various sources, retene might serve as a better marker in
this context (Figure S7 in Supporting Information S1; Ramdahl, 1983).

3.3.2. Implications for the Input Pathways and Coastal Fates of PAHs in the ESAS

The spatial patterns of various PAH profiles in the ESAS are presented in Figure 6. Factor 1 exhibited the
relatively high concentrations in the nearshore areas of the LS and W‐ESS, which could be subject to the in-
fluences of permafrost erosion and riverine input (Stein &Macdonald, 2004; Vonk et al., 2012). Moreover, based
on comparison with reference source profiles of permafrost‐affected soils (Vasil'chuk et al., 2020; Thienpont
et al., 2020; Pastukhov et al., 2021; Wei et al., 2024), the estimated contribution of factor 1 accounting 30% of the
total variance could be likely linked to permafrost‐related emissions. This indicated a potential input pathway for
these petrogenic PAH components in the ESAS (Lin et al., 2022; Thienpont et al., 2020). Due to the input of
substantial amounts of terrigenous material from the Lena River, which drains a watershed primarily composed of
continuous permafrost (Figure 1) (Miner et al., 2022), PAHs with highly petrogenic signals in the Lena River
estuary presumably have undergone long‐distance transport via rivers (Yunker et al., 2011). As warming in-
tensifies, enhanced riverbank erosion and elevated runoff (Tananaev & Lotsari, 2022) have possibly resulted in
the migration of PAHs from watershed permafrost into riverine systems (Elmquist et al., 2008; Jin et al., 2022),
which ultimately deposited in the adjacent Arctic shelf. Previous studies have found that petrogenic hydrocarbons
in sediments of the central Arctic Ocean were associated with substantial eroded coal transported from the Lena
River watershed (Yamamoto et al., 2008; Yunker et al., 2009, 2011). Moreover, the release of PAHs from coastal
erosion in the W‐ESS is a rapid and abrupt collapse process (Turetsky et al., 2019). This coastal permafrost
slumping could introduce previously bound PAHs from the terrestrial geology to the shelf ecosystem, which are
shown to be more indicative of petrogenic sources (Thienpont et al., 2020).

In addition to land‐based input, atmospheric transport and subsequent deposition also represent a significant PAH
contribution within the Arctic coastal shelf system (Ding et al., 2007; Halsall et al., 1997; Ma et al., 2013). PMF
analysis revealed that atmospheric source accounts for a higher proportion of PAHs in open‐sea regions (e.g.,
outer shelf sites and CS) than those in the coastal margins (Figure 6), indicating that atmospheric deposition
represents a primary input pathway in the ESAS. Biomass burning constitutes another prominent portion of the
atmospheric load, and mostly originating from numerous circum‐Arctic vegetation fires, particularly in the most
fire‐prone areas of the Siberian Arctic (Kharuk et al., 2022; Soja et al., 2004). It was reported that atmospheric
circulation can transport wildfire smoke, carrying PAH compounds and carbon components, such as soot,
northward to the Arctic (Kim et al., 2005; Song et al., 2023).

Due to the lipophilicity of PAHs, the influences of biological activity on PAH settlement in the highly productive
Chukchi Shelf cannot be neglected (Galbán‐Malagón et al., 2012; Liu et al., 2021). HMWPAHs are more likely to
bind to particles produced by organisms and settle vertically into sediments, whereas LMW PAHs, which are
more water‐soluble, are easily taken up by plankton and accumulated in their bodies (González‐Gaya et al., 2019;
Nizzetto et al., 2012). The concentrations of LMW PAHs are highest in samples from the highly productive CS

Figure 6. Spatial patterns and contributions of four PMF‐resolved factors to PAH abundance in each sediment sample from the ESAS. Ellipses represent the proportional
contributions of each factor in the coastal sites of the LS and W‐ESS, outer shelf sites of the ESS, and the entire CS.
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(Figure 6), where 38% of total primary productivity is contributed by the phytoplankton (<2 μm) such as diatoms
(Park et al., 2022). Furthermore, this PAH profile demonstrates a resemblance to the reported compositions of
plankton and benthos samples, which were dominated by LMW PAHs (e.g., Phe, Ace, Flu, and Fluo) (González‐
Gaya et al., 2019; Ma et al., 2020). Previous studies have found that two diatoms, Nitzschia sp. and Skeletonema
costatum, can accumulate Phe and Fluo (Hong et al., 2008), thereby representing a potential biogenic‐related
constraint on the occurrence of these LMW PAHs. With continued warming, increased air‐sea exchange, bi-
otic degradation, and photolytic degradation are regarded as important factors affecting PAH behaviors. Together
with the biological processes, these factors jointly regulate the sources and fates of PAHs (González‐Gaya
et al., 2016; Ke et al., 2017; Ma et al., 2011).

3.4. Correlation Between the PAHs and BC and Their Environmental Implications

BC shares similar sources with pyrogenic PAHs (primarily composed of HMW PAHs) from incomplete com-
bustion processes (Gustafsson & Gschwend, 1997; Jonker & Koelmans, 2002; Lohmann et al., 2005), and its
strong adsorption capacity significantly impacts the occurrence of sedimentary PAHs (Accardi‐Dey &
Gschwend, 2002; Jonker & Koelmans, 2002). Based on the results of PMF source apportionment (Figure 6), we
performed a correlation analysis between BC and PAHs in the CS, where atmospheric deposition was the pri-
marily influencing factor, and compared it to that in the LS and W‐ESS, which were mainly affected by terrestrial
input (Figure 7).

In the present study, a significant correlation (r = 0.71, p < 0.05) was observed between HMW PAHs and soot‐
BC, but only in the CS (Figure 7a). This subtype of BC is the smaller combustion particulates (0.1–1 μm) which
are readily transported and deposited via atmosphere (Gustafsson et al., 2001; Wang et al., 2013). The associ-
ations between soot particles and HMW PAH compounds are attributable to two reasons. First, soot‐BC has a
strong affinity for nonpolar substances such as PAHs (Jonker & Koelmans, 2002). Second, HMW PAHs, as
molecular precursor of soot (Richter & Howard, 2000), can be co‐emitted with soot into the atmosphere, making
them likely to be co‐deposited to sediments (Figure 8; Han et al., 2015). Therefore, the co‐occurrence of HMW
PAHs and soot‐BC indicated similar input pathways (e.g., atmospheric loading) for these pyrogenic particulates
on the CS shelf (Wang et al., 2013). In addition, the biological processes serve as an alternative input mechanism
and play a dominant role in PAH behaviors in this high‐productivity area (Figure 8; Galbán‐Malagón et al., 2012;
Berrojalbiz et al., 2011). Due to the recent thinning of sea ice and the substantial increase in light transmittance
within Arctic waters (Ardyna et al., 2022; Arrigo et al., 2012), the biological constraint is receiving increasing
attention regarding its role in modulating atmospheric transport and the fate of PAHs.

In contrast, the western ESAS is affected by both river discharge and ice‐rich permafrost erosion, which could
release the PAHs and carbonaceous materials stored in watershed and coastal permafrost (Sparkes et al., 2018;
Yunker et al., 2009, 2011). The large Arctic rivers (e.g., the Lena, Indigirka, and Kolyma Rivers) mostly drain

Figure 7. Spearman correlation coefficient matrix heatmap of PAH composition, TOC, and BC in the (a) CS and (b) LS and W‐ESS.
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catchments containing permafrost and vegetation fires, such as southern Siberian taiga and tundra wildfires
(Figure 1; Talucci et al., 2022). Unlike in the CS, char‐BC and TOC are well correlated with PAHs in the LS and
W‐ESS (Figure 7b). This BC fraction consists of larger particle size compared to atmospheric soot and tends to
deposit in close to the source area (Schmidt & Noack, 2000). The partial combustion‐derived PAHs emitted into
the atmosphere could settle in rivers or onto the topsoil‐permafrost, and subsequently be captured by these
carbonaceous particles (e.g., char‐BC and TOC) (Nam et al., 2008). As the permafrost thaws, they could be
delivered together into adjacent Siberian shelf regions through fluvial transport (Figure 8; Adhikari et al., 2019;
Masiello & Louchouarn, 2013; Myers‐Pigg et al., 2015). Moreover, the PAHs correlate more closely with char‐
BC than TOC, which could be attributed to the higher sorption capacity of this carbon faction (Han et al., 2015).
Char‐BC has high internal microporosity, providing a solid matrix that traps and stabilizes PAHs (Bornemann
et al., 2007; Yunker et al., 2011). Therefore, the fates of PAHs in the western shelf could be largely constrained by
char‐BC through co‐transport processes, and/or post‐depositional particle bonding (Yunker et al., 2011). As the
permafrost input become a potentially important contributor of PAHs with climate warming, the closer associ-
ations indicate that the terrestrial carbonaceous particles would play a growing role in determining the coastal
fates of PAHs in Arctic coastal margins.

4. Conclusions
The occurrence of PAHs in the ESAS sediments was dominated by LMW PAHs, with Phe being the main
component. Significant spatial variations of PAHs concentration were observed across the ESAS, with the highest
level observed in the CS and at the ice edge along the eastern ESAS break. PAHs exhibited a mixture of pet-
rogenic and pyrogenic sources, with distinct fates related to diverse input pathways in coastal and open sea areas
of the ESAS. The deposition and burial of pyrogenic PAH compounds originating from fossil fuel and biomass
combustion, were significantly enhanced by biological processes, particularly on the Chukchi Shelf. In addition,
BC played a key role in affecting the behavior and fates of pyrogenic PAHs. Specifically, PAHs exhibited a close
association with soot‐BC in the CS, but shared coupled processes with char‐BC in the western ESAS. The
petrogenic PAHs identified through the PMF model displayed varied input mechanisms, which explained a
regional disparity in PAHs sequestration. These LMW PAHs in the sediments of CS could be more linked to
plankton uptake and sinking, whereas their presence in the LS and W‐ESS should be significantly influenced by
the land‐based processes (e.g., fluvial discharge and coastal permafrost erosion). The identification of the sig-
nificant signals of permafrost‐related PAHs emissions in the Siberian coastal area underscored the concern that

Figure 8. Schematic illustration of PAHs and BC input and deposition heterogeneity in the Arctic coastal margin. Pyrogenic
PAHs, originating from fossil fuel combustion and wildfires, are transported via the atmosphere. They settle either by
combining with soot‐BC particles or through biological deposition in open‐sea regions (Ma et al., 2020; Wang et al., 2013).
As for terrestrial inputs, rivers delivered char‐BC and pyrogenic PAHs into the adjacent Siberian shelf regions. Coastal and
watershed permafrost erosion primarily contribute to petrogenic PAHs (Yunker et al., 2011).
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permafrost erosion could become a significant contributor and influencing factor in determining the coastal fate of
these carbonaceous materials in Arctic environments under future warming scenarios.

Data Availability Statement
The original data in present are available in Yu et al. (2024). The Sea‐ice concentrations (SIC) data from 2007 to
2016 are available from the National Snow and Ice Data Center (NSIDC, https://nsidc.org). The wildfires data
detected with Moderate Resolution Imaging Spectroradiometer (MODIS) wildfire data are obtained from the Fire
Information for Resource Management System (FIRMS, https://firms.modaps.eosdis.nasa.gov/). The detailed
concept and application of PMF source apportionment are described in the EPA PMF 5.0 Fundamentals and User
Guide (www.epa.gov/heasd/products/pmf).
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