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Abstract: This study presents the description of the parameterization of sound speed distribution in
the Sea of Japan in the presence of a synoptic eddy. An analytical representation of the background
sound speed profile (SSP) on its periphery is proposed. The perturbation of sound speed directly
associated with the presence of an eddy is investigated. The proposed parameterization of the back-
ground SSP leads to a Sturm–Liouville problem for normal mode computation, which is equivalent
to the eigenvalue problem for the Schrödinger equation with the Morse potential. This equivalence
leads to simple analytical formulae for normal modes and their respective horizontal wavenumbers.
It is shown that in the presence of an eddy causing moderate variations in sound speed, the stan-
dard perturbation theory for acoustic modes can be applied to describe the variability in horizontal
wavenumbers across the area in which the eddy is localized. The proposed parameterization can be
applied to the sound propagation modeling in the Sea of Japan.

Keywords: sound speed profile; sea of Japan; synoptic eddy; Morse potential

1. Introduction

The dependence of the sound speed on depth determines the conditions for sound
propagation in the ocean, the interference structure of an acoustic field, and the shape
of the impulse response function of the deep-water sound fixing and ranging channel
(SOFAR, also known as deep sound channel) [1,2]. This dependence has been the subject
of experimental and theoretical research since the discovery of the guided propagation of
acoustic waves in the SOFAR in the 1950s. Since the sound speed profiles (SSPs) obtained
in the course of direct measurements are often inconvenient for theoretical studies, a num-
ber of different analytical parameterizations for such profiles have been proposed [3–6],
e.g., the canonical Munk profile [1,3]. The respective formulae often catch the properties of
real dependencies of sound velocity on depth in different areas of the ocean, reasonably
providing a useful simplification for sound propagation modeling.

Hydrological inhomogeneities of various kinds, including, e.g., internal waves, ocean
fronts, and synoptic eddies, that are ubiquitous in the marine environment [7–10], can
be considered a perturbation of an SSP averaged over a certain area (hereafter called the
background SSP). Acoustical thermometry experiments [11–13] also led to the necessity of
estimating the influence of eddy on sound propagation. This influence was investigated
in several works [9,10,14–18], and some numerical models were proposed to handle eddy-
induced propagation effects [19,20].

Although the effect of various hydrodynamical inhomogeneities on sound propaga-
tion in the ocean has been studied extensively throughout the past three decades, little
information on the internal structure of synoptic eddies is available in acoustic literature.
This study examines a cruciform section of a stable anticyclonic eddy observed in the Sea
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of Japan during the summer of 1999, aiming at the construction of an analytical model of
the latter in the context of underwater acoustics (i.e., seen as a large-scale perturbation of
the background SSP in the area).

The uniqueness of the dataset under consideration consists in the fact that a research
vessel managed to pass approximately through the eddy center along both parallel and
meridian while performing CTD downcasts every 20 km and acquiring vertical distri-
butions of temperature and salinity. Using the collected data, we determined both the
background sound velocity profile and its three-dimensional perturbation associated with
the presence of the eddy. We also showed that the Morse formula [21] can be used to
accurately parameterize the background SSP. This parameterization allowed us to obtain
simple analytical formulae for eigenvalues and eigenfunctions of the SOFAR modes.

Furthermore, we demonstrated that the perturbation of the background SSP caused
by a synoptic eddy can be described by a product of a Gaussian function of the horizontal
variables and the Maxwell–Boltzmann-like distribution over depth with sufficiently high
accuracy. This parameterization could be useful for analyzing the effects of sound propaga-
tion in deep ocean, such as horizontal refraction of acoustic waves on a synoptic eddy.

This paper is divided into five sections. Section 2 provides a brief description of the
experimental data. In Section 3, the parameterization of the background SSP is considered,
while in Section 4, we show how it can be used for analytical computation of guided
(refracted-refracted) modes of the SOFAR channel. In Section 5, the parameterization of
the sound speed field perturbation due to a synoptic eddy is described. Section 6 outlines
perturbation theory for acoustic modes in the presence of an eddy. Finally, the results of
this study are summarized in Section 7.

2. Brief Description of the Experimental Data

In this section, we provide a brief description of the data collected during experimental
research conducted in the summer of 1999 in the Sea of Japan using the research vessel (RV)
“Professor Khromov”. During the field work, a set of vertical distributions of temperature
and salinity was obtained by CTD downcasts at the points shown in Figure 1. As can be
seen in Figure 1, the points where hydrological measurements were taken include two
perpendicular transects of a stable anticyclonic eddy along the parallel and meridian,
respectively (the red dots in Figure 1). The point of intersection of these lines approximately
coincides with the center of the eddy that can be observed on the satellite data.

Sound speed distributions obtained via interpolation of measurement data along
both transects are shown in Figure 2a and Figure 2b for meridian and zonal transects,
respectively. The divergence of the isolines of sound speed (clearly visible for ranges near
zero, i.e., for measurement points near the transects centers) confirms the presence of a
synoptic eddy in the considered area. At the same time, at a sufficient distance from the
presumed location of the eddy center in the southern, western, and eastern directions,
the vertical SSPs are similar to each other. This similarity implies that the eddy can be
considered a perturbation of a certain background SSP in this area.
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Figure 1. Map of the Sea of Japan with the points where CTD data were collected. The transects of
the eddy used in the work are shown in red.
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Figure 2. Contour plot representing sound speed distribution (in m/s) along the meridional (a)
and zonal (b) transects interpolated onto a regular grid. The range r denotes the distance from the
transects intersection. The divergence of the sound speed isolines (clearly visible near r = 0) indicates
the presence of a synoptic eddy.
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3. Background SSP Parameterization

As follows from the previous section, the sound speed distribution in the considered
area of the Sea of Japan can be represented as

c(r, z) = c0(z) + δc(x, y, z) , (1)

where c0(z) is the background (unperturbed) SSP, and δc(x, y, z) is a perturbation associ-
ated with the presence of a synoptic eddy. Note that in a first-order approximation, this
perturbation can be considered symmetric with respect to the vertical axis passing through
its center and described by the expression δc(r, z), where r is the horizontal distance from
the point to the center of the eddy. The first step in determining the components of the
superposition Equation (1) is the parameterization of the background SSP.

It is widely assumed [1,2] that in deep ocean SSPs, many situations can be accurately
approximated by the canonical Munk profile [1,3]

c0(z) = c1(1 + ϵ(η(z) + exp η(z)− 1)), η(z) =
2(z − z1)

B
, (2)

where z1 is the depth of the SOFAR axis, c1 is the sound speed at this depth (i.e., the minimal
value of sound speed), and B, ϵ are the profile parameters responsible for the variability of
this quantity near the minimum.

We fit the SSP, obtained by averaging the experimental profiles observed at the
measurement points at the largest distances from the eddy center, by the formula from
Equation (2), using the method of least squares. The averaged experimental background
SSP and its approximation by the Munk formula are shown in Figure 3a,b. Note that in practi-
cal problems, only the approximation of sound speed on the interval z ∈ [z1 − L/2, z1 + L/2]
of a few hundred meters below and above the SOFAR axis is important (as refracted–
refracted modes are mostly responsible for acoustic wave propagation in the channel). It is
interesting to assess the sensitivity of the approximation parameters to the variations in the
interval length L.
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Figure 3. The background SSP (the red line) and its approximation by the Munk SSP equation (the
blue line) in the whole depth range (a) and within a 100 m wide layer near the SOFAR axis (b).

The parameters z1, c1, B, ϵ of the Munk profile estimated using the least squares method
for different spans L of measurement data points are presented in Table 1. Note that the
parameters z1, c1 do not depend on L, since they physically correspond to the depth of the
SOFAR axis and the minimum sound speed value.
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Table 1. Optimal parameters for Munk SSP approximation for different lengths of the fitting interval
L (the profile parameters are optimized for z1 − L/2 < z < z1 + L/2).

L/2, m ϵ B, m RMSE Max. Deviation

50 1.1 × 10−3 186 4.43 ×10−2 0.92 × 10−1

100 0.9 × 10−3 187 5.04 × 10−2 1.41 × 10−1

200 1.0 × 10−3 194 8.17 × 10−2 3.05 × 10−1

Despite the fact that the Munk formula from Equation (2) provides a reasonably
accurate approximation for the background SSP observed in the experiment, it is somewhat
inconvenient to use within the framework of the theory of normal modes, since horizontal
wave numbers and eigenfunctions of modes can only be found numerically. Recall that an
acoustic field in a range-independent waveguide can be represented as a superposition of
normal modes ϕj(z) [1]

P(r, z, ω) = ∑
j

Aj(r)ϕj(z), (3)

where the expansion coefficients Aj(r) are called mode amplitudes. Now, we propose
another parameterization of the background SSP, for which the eigenfunctions ϕj(z) can be
found analytically. These eigenfunctions satisfy the following equation:

ϕzz +
ω2

c2(z)
ϕ = k2ϕ, (4)

where k are their respective horizontal wavenumbers, and c(z) is the sound speed pro-
file. Observe that Equation (4) is formally equivalent to the one-dimensional stationary
Schrödinger equation for a quantum particle in the potential V(x)

Ψxx − V(x)Ψ = −EΨ, (5)

where Ψ is the eigenfunction of a stationary state, and E is the corresponding eigenvalue
of the Hamiltonian. The quantity − ω2

c2(z) from Equation (4) corresponds to the quantum

mechanical potential V(x) from Equation (5). In this paper, we approximate − ω2

c2
0(z)

by the

so-called Morse potential [21], which is determined by the following equation:

− ω2

c2
0(z)

= c1 + De(1 − exp (−a(z − z1)))
2, (6)

where z1 is the depth of the SOFAR axis, c1 is the value of the potential on the SOFAR axis,
and De is the equivalent difference in the potential between the SOFAR axis z → ∞.

This potential seems appropriate, since within the L/2-neighborhood of the SOFAR
axis, the graph of the sound velocity c(z) determined by Equation (6) is qualitatively similar
to the background SSP in the sea area around the eddy. The function ω2

c2
0(z)

from the experi-

mental data was fitted by the Morse formula using the least squares method for various
spans of the measurement data L. The optimal parameter values z1, c1, De are presented in
Table 2, and Figure 4a,b show the agreement between the obtained parameterization and
the averaged background SSP in the experimental data.
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Figure 4. The background SSP (the red line) and its approximation by the Morse SSP equation (the
blue line) in the whole depth range (a) and within a 100 m wide layer near the SOFAR axis (b).

Table 2. Optimal parameters for Morse potential approximation for different lengths of the fitting
interval L (the profile parameters are optimized for z1 − L/2 < z < z1 + L/2).

L/2, m De a c1 RMSE Max. Deviation

50 2.83 × 10−2 3.80 × 10−3 −2.97 1.74 × 10−4 3.56 × 10−4

100 2.50 × 10−2 3.80 × 10−3 −2.97 2.02 × 10−4 3.79 × 10−4

200 2.58 × 10−2 3.60 × 10−3 −2.97 2.53 × 10−4 8.24 × 10−4

4. Analytical Calculation of Eigenfunctions and Eigenvalues in Comparison with
Numerical Calculation Results

Analytical expressions for calculating eigenfunctions and eigenvalues for the Schrö-
dinger Equation (5) with the Morse potential are given in many studies [21–23]. We now
use these results and the simple correspondence between the variables of the Helmholtz
and Schrödinger equations to express solutions to Equation (4) with the Morse potential (6)

ϕj(z) = Njζ
αj
2 exp (− ζ

2 )L
αj
j ζ , ζ = 2λ exp (−a(z − ze)) , 0 < ζ < ∞ ,

k2
j = −c1 − De +

α2
j a2

4 , j = 0, 1, . . . , ⌊λ⌋ ,
(7)

where L
αj
j (ζ) are Laguerre polynomials, ⌊λ⌋ is the largest integer less than λ, and

Nj =

√
j!αja

Γ(j + αj + 1)
, αj = 2λ − 2j − 1 , λ =

√
De

a
. (8)

The results of computation of horizontal wavenumbers and mode eigenfunctions by
Equations (7) and (8) are presented in Figures 5 and 6, respectively. They are compared
against the results obtained by high-accuracy numerical solution of the Sturm–Liouville
problem for Equation (4) computed both for the background SSP from the experiment
and for its approximation by the Morse formula (here and throughout the rest of this study
we perform computations for sound frequency f = 400 Hz). Reference numerical solutions
are obtained using AC_MODES software package [24] in which the computation of normal
modes is implemented by the method of finite differences.

One can see excellent qualitative and quantitative agreement between the modes
approximated using the Morse profile and the modes by a direct numerical solution. A
noticeable difference in wavenumbers for higher-order modes can be explained by the fact
that the experimental background SSP is approximated by the Morse formula only locally,
i.e., within a finite interval [z1 − L/2, z1 + L/2]. For modes of sufficiently high-order j,
the turning points of their corresponding rays lie outside this interval, and the analytical
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formulae proposed above do not catch the variations of their eigenfunctions far from the
channel axis properly.

The comparison of eigenfunctions of modes ϕj(z) computed numerically and their
counterparts obtained using the analytical Formula (7) for the Morse profile is presented
in Figure 6 for different mode numbers j. While for low-order modes (up to j = 10)
corresponding to paraxial propagation in the deep sound channel perfect agreement can be
observed, there are slight discrepancies in higher-order modes away from the channel axis
(see Figure 6d). These discrepancies would not play a significant role in the modeling of
sound propagation, especially in acoustic ranging and navigation problems.
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Numerical solution for experimental SSP

Figure 5. Horizontal wavenumbers kj(r) calculated by numerically solving the Sturm–Liouville prob-
lem for the experimental background SSP (diamond-shaped markers) and for its parameterization by
the profile corresponding to the Morse potential (filled round markers). Horizontal wavenumbers
computed by analytical formulae in Equations (7) and (8) are shown by empty round markers.
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Figure 6. Eigenfunctions ϕj(z) calculated by numerically solving the Sturm–Liouville problem for the
parameterization of the background SSP with the Morse potential (solid lines) and using analytical
formulae from Equations (7) and (8) (dashed lines) (a) ϕ1(z), ϕ2(z), (b) ϕ5(z), ϕ7(z), (c) ϕ11(z), ϕ15(z),
and (d) ϕ18(z).
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For numerical calculations of wavenumbers and modal functions, the ac_modes
program was used [24], which the authors use for solving such problems [25,26]. Note
that for low-order modes (i.e., for near-axial sound propagation in the SOFAR channel)
which usually carry most of the energy during propagation, for example, navigation
signals [26,27], the results of calculations using the Morse potential are in good agreement
with the results of calculations of the ac_modes program, in which the Sturm–Liouville
problem for normal modes is solved numerically using the finite difference method.

5. Parameterization of Sound Speed Perturbation Due to a Synoptic Eddy

The next step is parameterization of a perturbation of the background SSP caused by
the presence of a synoptic eddy. We obtain the perturbation δc(r, z) from the measurement
data, according to Equation (1), i.e., by subtracting the background SSP c0(z) corresponding
to the Morse potential from the sound speed distribution c(r, z) observed in the experiment.
The resulting perturbation δc(r, z) is presented in Figure 7a and Figure 7c for the meridional
and zonal transects, respectively.

As can be seen from the figures, this perturbation is localized in space. This fact
confirms that our approach based on the field decomposition according to the formula
from Equation (1) is adequate for the considered dataset. The authors of [28,29] proposed a
parameterization of synoptic eddies (in the context of sound propagation problems) based
on Gaussian functions of the following form:

δc(r, z) = cm exp
(
−r2/r2

r

)
exp

(
−(z − z0)

2/r2
z

)
, (9)

where cm is the magnitude of the sound speed perturbation, z0 is the depth of the eddy
center, and the values rr, rz determine the horizontal and the vertical size of the eddy,
respectively.

Apparently, the formula from Equation (9) is not fully adequate for the dataset con-
sidered here, since it assumes the reflection symmetry of the eddy around the line z = z0,
which is not observed in our case. For this reason, we used the Maxwell–Boltzmann dis-
tribution to parameterize the sound speed field perturbation δc(r, z) in z direction. We
also take into account that this eddy may not possess a rotational symmetry with respect
to a vertical line r = 0, i.e., that sound speed isolines in a horizontal plane near the eddy
are ellipsoidal rather than circular and that the intersection point of meridional and zonal
transects may not exactly coincide with the center of the eddy.

We, therefore, start with the assumption that the eddy center is located at the point
(x0, y0) in the Cartesian coordinate system with the origin at the intersection point
(x = 0, y = 0) of the two transects. Hence, δc(x, y, z) can be parameterized as follows:

δc(x, y, z) = −cm exp
[
− (x − x0)

2

r2
x

]
exp

[
− (y − y0)

2

r2
y

]

×
(

z − z0

rz

)
exp

[
− β(z − z0)

2

r2
z

]
,

(10)

where β is the Maxwell–Boltzmann distribution parameter related with the asymmetry of
the distribution along the z axis, and rx, ry determine the characteristic size of the eddy in
the directions along the meridian and the parallel, respectively.

The optimization of the values of β, rx, ry, rz, y0, x0, z0, cm for this parameterization
simultaneously over the two transects of the sound speed field δc(r, z) was performed
using the least squares method. As in the previous section, the optimization was performed
using the data from the depth interval limited by L = 200 m about the deep sound chan-
nel axis. The optimal values are presented in Table 3, and the resulting perturbations of
sound speed fields for meridional (δc(0, y, z)) and zonal (δc(x, 0, z)) transects are depicted
in Figure 7b and 7d, respectively. In addition, experimental and parameterized perturba-
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tions of the SSPs (δc(0, 0, z)) at the eddy center for the zonal and meridional transects are
presented in Figure 8a and 8b, respectively.
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Figure 7. Contour plot of the sound speed perturbation δc(r, z) along the meridional (a) and the zonal
(c) transects. It is obtained by subtracting the background SSP c0(z) from sound speed field c(r, z).
The parameterization of the eddy along these transects according to Equation (10) is presented in
subplots (b) and (d), respectively.

Table 3. Optimal parameters for approximation of sound speed field perturbation by Formula (10).

β rx, km ry, km rz, m x0, km y0, km z0, m cm, m/s

1.7125 32 18 250 6 4 67.5 3.5
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Figure 8. SSP perturbation δc(0, 0, z) in the eddy center for the zonal (a) and meridional (b) transects
(the solid line), also obtained using parameterization according to the formula from Equation (10)
(the dashed line).

The standard deviation for the optimal parameterization is 0.38 m/s, and the maximal
one is 2.05 m/s. Despite the fact that the latter value is not very small, it is clearly asso-
ciated with the data outliers at the periphery of the eddy. As can be seen from Figure 7,
this deviation is much smaller in the eddy center area; hence, it can be concluded that
Equation (10) adequately reproduces the sound speed field perturbation δc(x, y, z).

6. Calculation of Eigenfunctions and Eigenvalues in the Presence of an Eddy

As is mentioned in the previous sections, the wavenumbers for the background SSP
calculated using analytical formulae for the Morse potential are in good agreement with
the numerical results for the real background SSP observed in the experiment. In order to
achieve an analytical description (modulo some quadratures) of the sound propagation
through an eddy, we can use the perturbation theory for normal modes [1] in the underwater
sound channel to evaluate horizontal wavenumbers in the neighborhood of the center of
the eddy.

We start with the standard equations of perturbation theory [1,21] (up to the second
order), written as follows:

K2(x, y, z) = K2
0(z) + ν(x, y, z) , (11)

k2
j (x, y) = k2

j,0 + δk2
j (x, y) + δ2k2

j (x, y) . . . ,

δk2
j (x, y) =

∫ H

0

ν(x, y, z)ϕ2
j (z)

ρ(z)
dz ,

δ2k2
j (x, y) = ∑

l ̸=j

1
k2

j,0 − k2
l,0

∫ H

0

ν(x, y, z)ϕj(z)ϕl(z)
ρ(z)

dz ,

where K0(z) = ω
c0(z)

is the medium wavenumber for the background SSP, K(x, y, z) is
the eddy-perturbed medium wavenumber, and ν(x, y, z) is the difference in their squares
(this value corresponds to the potential perturbation in quantum mechanics). By k j,0, we
denote the horizontal wavenumbers of modes calculated for the background SSP, ϕj(z) are
their corresponding eigenfunctions, and δk2

j (x, y) and δ2k2
j (x, y) are the perturbations of

horizontal wavenumbers squared due to the presence of the eddy. The mode perturbation
theory [1,21] may also be used to calculate eigenfunctions for an eddy-perturbed SSP,
which may be presented in the form of a series over unperturbed eigenfunctions ϕj(z) (the
respective formulae can be found in any textbook on quantum mechanics, e.g., [21]).

The results of the numerical solution of the Sturm–Liouville problem for Equation (4)
for the SSP c0 + δc(0, 0, z) at the eddy center (where the perturbation has the largest
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magnitude) are compared with the perturbation theory as elucidated in Equation (11) in
Figure 9.
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1 5 10 15 20 25 30
Mode number j

1.716

1.718

1.72

1.722

1.724

k
j, 

m
-1

0

0
+  c

P.t.1

P.t.2

Pade

(b)

1 5 10 15 20 25 30
Mode number j

1.714

1.716

1.718

1.72

1.722

1.724

k
j, 

m
-1

0

c
0
 +  c/2

P.t.1

P.t.2

Pade

Figure 9. (a) Wavenumbers kj calculated by numerical solution of the Sturm–Liouville problem
for Equation (4) at the center of the eddy, i.e., for SSP c0(z) + δc(x, y, z) (the red solid line); for
the background SSP c0(z) (the blue line with round markers); horizontal wavenumbers computed
using the first-order (the yellow solid line with star-shaped markers) and the second-order pertur-
bation theory Equation (11). The equivalent Padé approximation is plotted by the green dotted line
with rhombus markers. (b) The same plot for the half-magnitude sound speed perturbation (i.e.,
c0(z) + δc(x, y, z)/2).

In this case, the blue line corresponds to the horizontal wavenumbers for the un-
perturbed SSP c0(z), while the red line corresponds to the SSP at the center of the eddy.
Subplot Figure 9b presents the same quantities but for the half-magnitude perturbation
0.5δc. The approximations according to the first- and second-order perturbation theory
are shown in Figure 9 by the yellow and purple lines, respectively. In addition, the green
dotted line presents the approximation by the Padé perturbation theory [30].

An acceptable accuracy of the approximation is achieved for the full-magnitude
perturbation δc only when using second-order formulae. Note, however, that this situation
is somewhat extreme from the viewpoint of the perturbation theory applicability conditions.
Indeed, the magnitude of the eddy-related potential perturbation exceeds half of the depth
of the equivalent potential well (in terms of an equivalent quantum-mechanical problem).
Physically, this results from the fact that the center of the eddy is located almost exactly at
the deep sound channel axis.

As shown in Figure 9b, at the points of the eddy with the half-amplitude perturbation
δc(x,y,z)

2 , even the first-order perturbation theory gives an almost exact result (except the
first few modes), while the second-order formulae for the Taylor and Padé series accurately
reproduce the wavenumbers of the eddy-perturbed SSP. Note that both first-order and
second-order perturbation theory offer almost the same level of convenience when using
finite formulae for the numerical and analytical description of sound propagation in the
ocean. Indeed, the quadratures in the last two formulae (11), that have the same structure
in depth, still do not allow us to obtain an explicit expression by taking the integral. As a
result, the wavenumbers k2

j (x, y) in any case will simply have the same form of dependence
on x, y, as the speed of sound c(z) in Equation (10).

7. Conclusions and Discussion

This paper presents a parameterization method for the sound speed field perturbation
caused by a synoptic eddy in deep ocean. The existing parameterizations [28,29] serve
as the basis for the derivation of an improved version of the equation that could better
describe such a perturbation. The proposed parameterization is applied to approximate real
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oceanographic data collected along two perpendicular transects of a large and stable syn-
optic eddy during the field work in the Sea of Japan. An approximation of the background
SSP by an analytical expression corresponding to the Morse potential in quantum mechan-
ics allowed us to obtain explicit expressions for refracted-refracted acoustic modes [1] of
the SOFAR channel (i.e., the modes corresponding to Brillouin rays having two turning
points in the water column and not reaching the surface and the bottom). The use of these
formulae and the perturbation theory for acoustic modes allowed us to obtain a convenient
semi-analytical representation of the dependence of the modal wavenumbers on horizontal
coordinates. The respective formulae can be used for solving two- and three-dimensional
problems of sound propagation through a synoptic eddy.

As shown in Figure 10, the graphs representing the dependence of horizontal wavenum-
bers for low-order modes (trapped in the SOFAR channel) on range do not intersect.
For sound frequencies of a few hundred Hertz, this fact indicates the adiabatic sound
propagation through an eddy. In addition, this fact allows one to substantially simplify the
computation of acoustic fields in the framework of normal modes theory, e.g., using mode
parabolic equations [31] or the vertical modes/horizontal rays approximation.

In future work, we could use analytical parameterizations of the sound speed profile
in the Sea of Japan and the perturbation due to the presence of an eddy for performing
analytical simulations of acoustic waves propagation in the considered area. By contrast to
a direct numerical solution of the wave equation (or the Helmholtz equation), analytical
formulae for horizontal rays and mode amplitudes could provide additional insights into
the physics of sound scattering by large-scale objects like synoptic eddies. An example on
how this can be accomplished using separation of variables technique is [32].
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Figure 10. Wavenumbers of modes kj(r) where distance r = 0 corresponds to the eddy center.
The spectral lines do not intersect and remain practically equidistant, and the sound propagation
through the eddy for modes with small grazing angles relative to the SOFAR axis can be consid-
ered adiabatic.
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