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Abstract: Freezing precipitation and the resultant ice glaze can have catastrophic impacts on urban
infrastructure, the environment, forests, and various industries, including transportation, energy,
and agriculture. In this study, we develop and evaluate regional algorithms for detecting freezing
precipitations in the Far East, utilizing the ERA5 reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts, along with standard meteorological observations for 20 cold
seasons (September–May) from 2004 to 2024. We propose modified diagnostic algorithms based
on vertical atmospheric temperature and humidity profiles, as well as near-surface characteristics.
Additionally, we apply a majority voting ensemble (MVE) technique to integrate outputs from
multiple algorithms, thereby enhancing classification accuracy. Evaluation of detection skills shows
significant improvements over the original method developed at the Finnish Meteorological Institute
and the ERA5 precipitation-type product. The MVE-based method demonstrates optimal verification
statistics. Furthermore, the modified algorithms validly reproduce the spatially averaged inter-
annual variability of freezing precipitation activity in both continental (mean correlation of 0.93) and
island (correlation of 0.54) regions. Overall, our findings offer a more effective and valuable tool for
operational activities and climatological assessments in the Far East.

Keywords: freezing rain; extreme weather; ERA5 reanalysis; meteorological observations; diagnostic
algorithm; Far East

1. Introduction

Freezing precipitation (FZRA)—which occurs as rain or drizzle—typically forms in
the warm atmospheric front zones due to advective temperature inversion in the lower
troposphere. This process involves a warm and moist air mass with positive temperatures
flowing over a colder near-surface layer with temperatures below or near 0 ◦C [1]. As solid
precipitation falls, it partially or completely melts in the elevated warm layer, transforming
into rain through the “melting process”. In the cold layer, the raindrops become supercooled
and upon contact with exposed objects, and they form a dense, smooth, transparent ice
known in meteorology as glaze ice. At high cloud top temperatures, FZRA can begin
as liquid precipitation (“warm rain”), with raindrops becoming supercooled in the cold
near-surface air, leading to the formation of an icy crust on surfaces [2–7]. The glaze ice
phenomena associated with FZRA can have catastrophic impacts on urban infrastructure,
the environment, the economy, and human health [8–10]. According to the American
Meteorological Society Glossary of Meteorology, intense and prolonged FZRAs with glaze
ice measurements of 6 mm or more in diameter are classified as ice storms.

The most destructive impacts of FZRA are observed in North America, Canada, and
Europe, including European Russia [8,11–14]. In the Far East, intense and prolonged
freezing precipitation occurs less frequently and tends to cause less damage. However,
from September to May, freezing precipitation of varying intensity and duration is recorded
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in the different Far East areas, mainly driven by southern synoptic processes. Notable
examples of destructive FZRA include the events of 18–19 November 2020, in the southern
part of Primorsky Kray [10,14,15], 1–3 January 2011 in Guizhou Province, China [16], and
3 January 2003 over Kanto Plain, Japan [4]. The regional features of terrain topography
significantly influence the intensity and duration of FZRA [17,18], which is likely one of
the reasons for the pronounced geographical heterogeneity in their localization. Another
probable reason is the temporal heterogeneity of the observations (see Section 3.1).

Research on FZRA in the Far East encompasses a range of topics, including formation
mechanisms and synoptic conditions [4,14–20], as well as the development of climatology
and forecast models [5,21–23]. However, it is important to note that these studies have been
confined to specific areas, such as South Korea, Japan, China, and the Russian Far East.
Comprehensive climate studies covering the entire Far Eastern region are lacking, with the
exception of global distribution analyses of FZRA [7].

A series of studies have investigated the synoptic conditions, formation mechanisms,
and climatic characteristics of FZRA, primarily utilizing meteorological observations and
upper air soundings [11,24–26]. A notable limitation of this approach is the spatial hetero-
geneity inherent in the standard meteorological observation network, which can compromise
the reliability of the derived statistical estimates and climatic characteristics. The use of re-
analysis and modeling techniques offers a solution by addressing gaps in datasets caused by
the uneven spatial distribution of meteorological observations [6,7,12,13,27–29]. An increas-
ingly pertinent research area involves forecasting the variability in the frequency of FZRA
events and the shift in their predominant localization due to global warming [13,30,31].

The primary limitation of reanalysis-based predictive and climate models lies in the
significant errors associated with the algorithms used to diagnose freezing precipitation. As
demonstrated by Reeves et al. [32] and Kmarainen et al. [28], even minor deviations in the
vertical temperature distribution can influence the type of precipitation. Furthermore, the
mismatch between the horizontal resolution of the reanalysis data and the scale of FZRA
events may lead to a discrepancy between the predicted temperatures in the melting and
freezing layers with the actual thresholds at which these layers form. Consequently, the
reliability of FZRA identification by most algorithms is compromised due to the inadequate
horizontal, vertical, and temporal resolution of the reanalysis data.

Detecting freezing precipitation and accurately distinguishing it from ice pellets is
a complex task, being particularly challenging in regions with significant terrain hetero-
geneity. Two primary approaches are used to identify precipitation types: (1) the implicit
(diagnostic) approach, which utilizes vertical profiles of temperature, humidity, and geopo-
tential height [33–37] to predict the expected precipitation phase on the surface; and (2) the
explicit approach, which is based on microphysics models [38–40] that describe the char-
acteristics of hydrometeors and account for their interactions. The explicit approach,
grounded in physical principles, offers the potential for higher accuracy but demands sig-
nificant computational resources. Although diagnostic algorithms are used more frequently
in climatological studies, comparative analyses [41] have revealed substantial differences in
determining the type of precipitation, with diagnostic methods showing limited capability
in identifying FZRA compared to snow or rain [32].

FZRA, which includes freezing rain and drizzle, is often accompanied by snow or ice
pellets. The effectiveness of existing algorithms is often compromised by their inability to
accurately distinguish between these forms of precipitation [32]. Algorithms designed to
diagnose mixed precipitation, which includes combinations of freezing rain/drizzle and ice
pellets, have demonstrated significantly improved performance [31]. Nonetheless, FZRA
remains the primary glaze-forming factor, leading to severe impacts on infrastructure and
populations. This underscores the need to develop algorithms with advanced capabilities
to accurately identify FZRA events.

This study aims to develop and validate a regional FZRA detection algorithm using
the high-resolution ERA5 reanalysis dataset and standard meteorological measurements
over 20 cold seasons (September–May) from 2004 to 2024. The study area is defined by the
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coordinates 25–65◦ N and 10–150◦ E, which have been selected based on climatic conditions
and typical synoptic processes that contribute to the formation of freezing precipitation in
the Far Eastern region.

Section 2 provides a description of the meteorological observation and ERA5 reanalysis
datasets used in this study, as well as the methods applied. Section 3 details the develop-
ment and validation of regional FZRA detection algorithms, including the processing of
meteorological data to determine threshold values for the algorithms. Section 4 analyses
the inter-annual variability of FZRA event activity and demonstrates the application of the
algorithms through a case study. Finally, Section 5 offers a summary and conclusions.

2. Materials and Methods

In this study, freezing precipitation, encompassing freezing rain (FZRA) and freezing
drizzle (FZDZ), will be referred to as FZRA. FZRA detection algorithms utilize ERA5
reanalysis datasets, applying threshold criteria for air temperature (T) in the melting
and sub-freezing layers, relative humidity (RH) at standard isobaric levels in the lower
troposphere, surface atmospheric pressure, precipitation rate, and standard deviation of
sub-grid scale orography. ERA5 reanalysis datasets, along with standard meteorological
measurements, were employed to calibrate and validate the algorithm.

2.1. Weather Station Observations

Data on FZRA events for 20 cold seasons were sourced from standard meteoro-
logical observations at 841 weather stations, available in the NOAA archive at https:
//www.ncei.noaa.gov/access/search/data-search/global-hourly, accessed on 21 Novem-
ber 2023. Information on freezing rain and drizzle was extracted from weather reports
encoded using the World Meteorological Organization (WMO) international codes: (1) FM-
12 SYNOP for weather stations, (2) FM-15 XV METAR for aerodromes [42], and Code
KN-01 SYNOP for operational surface meteorological observations from the Federal Ser-
vice for Hydrometeorology and Environmental Monitoring of the Russian Federation
(ROSHYDROMET) weather station network.

FZRA observations were checked at various types of weather stations: manually
operated, automatic with partial manual operation, fully automatic, and aviation. Mea-
surements from fully automatic and automatic with partial manual operation weather
stations were excluded due to a high probability of errors in precipitation type identifi-
cation and incomplete observation records (no data from a number of automatic stations
for 2004–2024 are available in the NOAA archive). After applying filters (see Section 3.1),
236 weather stations with 4675 FZRA records were selected: 179 manually operated stations
(observations at synoptic times with intervals of 3, 6, or 12 h, depending on the station
class) and 57 aviation stations (observations at intervals of 1 h or less).

2.2. ERA5 Reanalysis Dataset

The FZRA detection algorithm was developed using the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 next-generation reanalysis datasets, which have
a spatial resolution of approximately 31 km and an hourly time step. ERA5 is based on the
Cy41r2 integrated forecasting system and enhanced observational data assimilation [43].
The following atmospheric parameters were obtained from https://cds.climate.copernicus.
eu/ (accessed on 27 November 2023) and used as predictors: T (◦C) and RH (%) at the
isobaric levels of 1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 700, 650, 600, 550,
500 hPa; near surface air temperature at a height of 2 m (T2m, ◦C); surface atmospheric
pressure (Psur f , hPa); precipitation rate (Pr, mm/h); standard deviation of sub-grid scale
orography (σH , m).

https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://www.ncei.noaa.gov/access/search/data-search/global-hourly
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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3. Algorithm Development
3.1. Processing of Weather Stations Data

The FZRA data were taken from standard observations records at weather stations
using WMO codes FM-12 SYNOP and FM-15 METAR. The required data are located in the
section of the present weather with the code 7. For manually operated weather stations
(codes FM-12 SYNOP), groups were selected with the digital code 24 (freezing rain in the last
hour, but not in the time of principal synoptic observation) 56 (light freezing drizzle, glaze
ice), 57 (moderate or heavy freezing drizzle, glaze ice), 66 (light freezing rain, glaze ice), and
67 (moderate or heavy freezing rain, glaze ice) at the time of observation. Measurements
by automatic weather stations were not included in the dataset (see Section 2.1). Data were
selected from the weather reports of aviation weather stations (codes FM-15 METAR) with
the letter codes FZRA (freezing rain) and FZDZ (freezing drizzle).

In the national coding version for Russian weather stations, the digital code 79 (glazed
rain) was considered. According to the definition of ROSHYDROMET, glazed rain is
transparent ice pellets formed because of becoming icing-up droplets in a near-surface air
layer with a negative temperature. Upon contact with the surface, the pellets break, and
the water flowing out of them freezes and forms an ice crust.

The digital codes 87 and 88 (snow or ice pellets with or without rain or rain and snow
in the time of principal synoptic observation) were considered only when recording ice
accumulation on the wire of the ice diameter gauge at those meteorological stations where
it was available. Data on the glaze ice diameter were selected from the code group 934RR
detailed in Section 3, where RR is the diameter in mm. In the absence of data on glaze ice,
it is impossible to determine the FZRA presence from the above code digits.

To minimize observational errors, additional filters were applied. Weather stations
that recorded an FZRA event only once during the twenty years were filtered out due to
the high probability of measurement or coding errors. Individual observations with digits
code indicating the presence of FZRA at T2m below −9 ◦C or above 4 ◦C were excluded
as erroneous, since for all FZRA events measured, the near surface air temperature was
distributed predominantly (97% of cases) in the range from −9 ◦C to 4 ◦C, with a median
value of −1 ◦C.

After applying all filters, 4675 FZRA records at 236 weather stations out of 841 were
selected. Thus, over the twenty-year observation period, FZRA was recorded by about 28%
of weather stations located in the study area.

To estimate the total FZRA amount, the optimal time interval between events was
determined by sequentially testing intervals from 3 h to 36 h, with a step of 6 h. The
sensitivity of the FZRA amount events to the time intervals is demonstrated in Figure 1.
Figure 1a shows the variability in the FZRA total amount events, normalized to their
amount at an interval of 3 h, which amounts to 1969 events taken as 100%. The decrease in
the FZRA events amount with an increase in the interval from 6 to 24 h is clearly visualized,
while an increase in the interval from 24 to 36 h shows practically no effect on its amount.

Hence, this leads to the conclusion that at intervals of 3 h, 6 h, 12 h, and 18 h, there is
a possibility of overestimating the FZRA events amount. In addition, weather phenomena
occurring in a single synoptic process usually fall within the 24 h interval. Thus, the optimal
interval between FZRA events was recognized as ≤24 h, i.e., FZRA events were defined
as one event if the time interval between the last record of the current phenomena and
the first record of the subsequent one was no more than 24 h. A similar methodology for
identifying the FZRA events number was used by the authors in [30].

The scatter plot of the events amount for the 6-h and 24-h time intervals for each
weather station (Figure 1b) shows good agreement between the intervals for weather sta-
tions that record no more than 70 FZRA events. Significant discrepancies have three weather
stations located in the mountainous regions of China at a height exceeding 1000 m above
sea level, where the maximum FZRA amount (more than 100 events) and maximum glazed
ice diameter were recorded. The studies [17,18] show that due to the specifics of synoptic
processes under the influence of regional topographical features, the duration of FZRA
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events increases rapidly at some weather stations in the mountainous regions of China.
As a result, FZRA events can continue for more than 24 h. Taking into account the se-
lected time interval of 24 h, the dataset of 1425 FZRA events was formed to calibrate and
validate the algorithms.

Figure 1. Sensitivity of freezing rain events to time intervals between them: (a) bar plot of the total
freezing precipitation amount variability, normalized on the amount at an interval of 3 h (1969 events);
(b) the scattering graph of the freezing precipitation events amount at each weather station for the
intervals of 6 and 24 h.

Figure 2 shows the spatial distribution and total events amount of FZRA events
according to records at weather stations for 20 cold seasons. Weather stations where FZRA
events were never recorded or were recorded only once during the twenty-year observation
period are visualized as gray circles. Gray circles surrounded by blue lines represent the
weather stations that recorded only one FZRA event during the study period. Weather
stations that recorded more than one FZRA event during the study period are indicated
by colored circles, the size and color of which depend on the events amount according to
the color scale. While analyzing the spatial distribution and total amount of FZRA events,
it is necessary to keep in mind that the visualized data cannot be considered sufficiently
reliable due to disruptions regarding the continuity of meteorological observations at the
individual weather stations during the study period. This is the second probable reason
for the spatial heterogeneity of FZRA localization, in addition to the influence of feature
topography on synoptic processes development (see Section 1).

3.2. Algorithms and Calibration

We utilized the FZRA detection method proposed by Kämäräinen et al. [28], which
identifies optimal threshold values for the following environmental parameters: (1) (T2m)—as
an indirect indicator of a sub-freezing layer; (2) the T and RH of the above-surface layers to
detect a warm layer necessary for melting solid precipitation; (3) Pr; and (4) the pressure
level between the warm and cold layers (Pcold). The latter, in conjunction with Psur f , allows
for the calculation of the cold layer depth (Hcold = Psur f − Pcold).

The original method developed by the Finnish Meteorological Institute (hereinafter
referred to as the FMIK) is an algorithm designed to estimate FZRA climatology using
ERA-Interim reanalysis data across Europe. It analyzes vertical profiles of temperature
and humidity from various atmospheric pressure levels (surface, 925, 850, and 700 hPa)
to identify the presence of a near-surface cold layer and an above-melting layer. The
algorithm utilizes calibrated threshold values, including the minimum cold layer depth
(Hthr

cold), maximum cold layer temperature (Tthr
t2m), minimum humidity (RHthr), temperature

(Tthr
melt) in the melting layer, and minimum surface precipitation rate (Prthr). These thresholds

were recalibrated based on observations from SYNOP weather stations, where the original
subjective values were systematically adjusted through a calibration process to enhance
their predictive accuracy.



Climate 2024, 12, 224 6 of 19

Here, environmental parameters were obtained from ERA5 reanalysis data for the
236 selected weather stations where at least one FZRA event was recorded over 20 cold
seasons. Spatiotemporal matching was conducted using the nearest neighbor method, elim-
inating duplicate pairs of METAR observations recorded with high frequency (<30 min−1).
The original algorithm calibrated with ERA5 data is referred to as T2MA.

Figure 2. Spatial distribution and total amount of FZRA events for 20 cold seasons (September–May)
from 2004 to 2024 by weather stations observations. Black numbered boxes 1 to 5 define areas with
weather stations selected for analysis of freezing precipitation events activity.

Due to orography being a significant source of precipitation uncertainty for ERA5
data with a spatial resolution of 31 km [28,44], we excluded areas with high orographic
heterogeneity (σH > 150 m). This orographic filter reduced the collocated data volume by
one-third, yet the correlation coefficient between weather stations and ERA5 Tt2m increased
significantly to 0.53. Notably, this modest correlation can be observed only in the sample
with freezing rain, where the temperature variability is limited (from −9 to 4 ◦C).

Another significant factor affecting FZRA detection accuracy is distance to the coastline.
Figure 3 demonstrates that during FZRA events in the continental region, the ERA5 T2m
values align well with observations, yielding a correlation coefficient of 0.7 and a standard
error of 1.3, with median values below zero. In contrast, in the coastal zone, the correlation
weakens, and the T2m distribution from the reanalysis shifts toward positive values, indi-
cating a “positive bias”. While approximately 75% of FZRA events recorded by weather
stations occurred at negative temperatures, ERA5 data show that only one-third of the
events fell within this range.

To enhance the viability of the FMIK method proposed by Kämäräinen et al. [28] as
an FZRA detection algorithm for the ERA5 dataset and the selected study area, we developed
several modified versions of the method. The proposed modifications included the following:
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• The use of ERA5 land skin temperature: Instead of T2m, we calibrated ERA5 land
skin temperature (Tskt), which exhibits a strong correlation with near-surface air
temperature across various spatiotemporal scales [45,46] and is expected to be negative
during glaze ice formation in FZRA. Additionally, the Tskt in ERA5 shows a less
pronounced positive bias in coastal zones compared to observations. This version of
the FZRA detection algorithm is denoted as SKTA.

• The inclusion of cold layer temperature: The thresholds of the environmental parame-
ters were supplemented by the minimum temperature in the near-surface cold layer
(Tcold). This modification is based on the traditional top-down approach commonly
used in weather forecasting centers [47]. Here, the calibration of the minimum depth
of the near-surface cold layer relies on both Tthr

cold and Tthr
melt thresholds. This modified

algorithm is referred to as TCLA.
• Majority voting ensemble (MVE) technique: Finally, we applied the MVE technique

to combine outputs from T2MA, SKTA, and TCLA, aiming to improve classification
and enhance FZRA detection accuracy. In the MVE approach, the resulting prediction
is determined by the FZRA label (True/False) that receives the most votes from the
individual algorithms, effectively eliminating ties. The MVE approach has been
utilized in various fields [48–51]. The MVE technique is referred to as ENSA.

Figure 3. Box (a,c) and scatter (b,d) plots of the collocated near-surface temperature (t2m) obtained
from reanalysis dataset (ERA5) and weather station observations (OBSs) in the coastal zone (distance
to the coastline is less than 200 km) and inland. Boxes (a,c) indicate the interquartile range, with the
horizontal line indicating the median value of t2m. Whiskers extend to the 5th and 95th percentiles,
with values outside these ranges plotted as black circles. Some statistics are also given on each scatter
plot: number of collocated points (N), correlation coefficient (R) and the root mean square error (σ).
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Following the methodology outlined by Kämäräinen et al. [28], we calibrated the
threshold values through an iterative looping process, evaluating all combinations of
parameter values with sufficient granularity—approximately 1,124,000 distinct threshold
combinations. This calibration employed the critical success index (CSI) as a performance
metric. The CSI was calculated by comparing the algorithm’s outputs with observations
of freezing precipitation, which is summarized in a 2 × 2 contingency table that includes
the following: (a) the number of hits, (b) false alarms, (c) misses, and (d) correct rejections
(Table 1). The CSI is defined as follows:

CSI =
a

a + b + c
(1)

Table 1. Our 2 × 2 contingency table.

FZRA Observed

True False

FZRA Detection Algorithm True a b
False c d

Diagnostic algorithms can overestimate the frequency of FZRA events due to the
disproportionate weighting of false alarms. This limitation is particularly significant in
studies of freezing precipitation climatology, as it may result in the identification of non-
existent regions with high FZRA frequency. To address the issue of FZRA overestimation,
the absolute value of the bias (Bias = (a + b)/(a + c)) is considered on a logarithmic
scale [28]. Consequently, the reward function used for calibration (Rcal) can be determined
by the following formula:

Rcal = CSI − | log(Bias)| (2)

To develop algorithms for detecting freezing precipitation, we randomly formed two groups
of paired reanalysis and observational data from a 20-year period. The first group, consisting
of 14 cold seasons, was used to identify the optimal combination of threshold values by maxi-
mizing Equation (2). The second group, comprising six cold seasons, was utilized to verify and
evaluate the efficiency of the algorithms, including the ENSA method. To improve the statistics
and minimize the impact of potential outliers, 12 iterations of calibration and validation were
conducted, and these iterations were followed by averaging the threshold values of the relevant
parameters and corresponding validation metrics.

Table 2 presents the averaged estimates of the threshold values for the environmental
parameters, including Tthr

melt, RHthr, and Prthr. These estimates align with typical con-
ditions for FZRA formation [18,52–54] and show good agreement among the proposed
algorithms—T2MA, SKTA, and TCLA. During FZRA events, the melting layer contains
a relatively warm (≥1.3 ◦C) and humid (≥84%) air mass, with possible light precipitation
near the surface (starting from 0.01 mm/h). The threshold values for surface temperature
(Tthr

t2m and Tthr
skt ) in the T2MA and SKTA algorithms differ slightly at 0.33◦ and −0.16◦, re-

spectively. The negative value of Tthr
skt facilitates the freezing of supercooled droplets upon

contact with cold surfaces.

Table 2. Comparison of calibrated threshold values of selected environmental variables for three
FZRA detection algorithms (T2MA, SKTA, TCLA); the bottom row contains the thresholds obtained
by Kämäräinen et al. [28] (FMIK).

Algorithms Tthr
melt (◦C) Tthr

cold (◦C) Hthr
cold (hPa) Tthr

t2m/Tthr
skt (◦C) Prthr (mm/h) RHthr (%)

T2MA 1.4 – 108 0.33 0.02 85
SKTA 1.3 – 112 −0.16 0.01 88
TCLA 1.3 −1.4 27 – 0.02 84
FMIK −0.64 – 69 0.09 0.065 89
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The cold layer depth (Hthr
cold), which defines the lower boundary of the melting layer,

requires special attention. In the T2MA and SKTA algorithms, the calibrated Hthr
cold value is

unrealistically large at 112 hPa (over 1000 m), which is a value more typical for ice pellet
formation [55]. A similar issue was noted in [28], albeit with a smaller discrepancy (69 hPa).
We propose that the original algorithm calibrates Hthr

cold based on the warm layer’s charac-
teristic temperature, neglecting the impact of the cold layer and resulting in a significant
overestimation. In contrast, the TCLA algorithm, which considers the subfreezing layer
temperature, yielded a much smaller minimum Hthr

cold of 27 hPa (approximately 220 m).
Roberts and Stewart [55] demonstrated that the cold layer depth during freezing precipita-
tion events can vary widely from 180 to 1500 m, with a median of about 850 m. Slightly
smaller estimates (around 700 m) were reported in [52]. It is important to note that the
ERA5’s vertical resolution in the lower troposphere is 25 hPa [43], which complicates the
accurate representation of thinner layers.

3.3. Detection Skill Evaluation

To directly compare the different algorithms, we computed key quality measures, as
described in [56]. In addition to the critical success index (CSI) and bias (defined above),
we included the Probability of Detection (POD) and Success Ratio (SR), which are defined
as follows:

POD =
a

a + c
, (3)

SR = 1 − b
a + b

. (4)

We also incorporated the Heidke Skill Score (HSS) as an additional evaluation metric [57],
which is useful for comparing precipitation-type forecasts [58–60].

Table 3 compares the performance of the five FZRA detection algorithms and the
ERA5 precipitation-type product across selected validation periods. The results show
significant variation in detection skill, as indicated by the CSI, with values ranging from
0.084 to 0.133; the ERA5 product exhibited the lowest skill. Notably, the TCLA and ENSA
methods achieved the highest CSI and HSS values of 0.133 and 0.234, respectively. But
the MVE-based ENSA technique also demonstrated the fewest false alarms—reflected
in an SR of 0.266. These results highlight the advantage of the ENSA in its reliability of
FZRA events detection.

Table 3. Comparison of verification statistics for six FZRA detection algorithms and corresponding
weather station observations in validation periods. Key quality measures of the algorithm include
the critical success index (CSI), the probability of detection (POD), success ratio (SR or 1 − false
alarm ratio) and bias, as described in [56]; the table also includes the Heidke Skill Score (HSS) as the
additional evaluation metric [57].

Quality Measures T2MA SKTA TCLA ENSA FMIK ERA5

CSI 0.132 ± 0.032 0.117 ± 0.023 0.133 ± 0.029 0.133 ± 0.030 0.104 ± 0.024 0.084 ± 0.020
POD (%) 22 ± 5 21 ± 4 22 ± 4 22 ± 5 25 ± 6 23 ± 4

SR 0.247 ± 0.054 0.209 ± 0.042 0.256 ± 0.052 0.262 ± 0.055 0.152 ±0.036 0.116 ± 0.031
Bias 0.90 ± 0.15 1.02 ± 0.17 0.85 ± 0.12 0.82 ± 0.14 1.66 ± 0.36 2.11 ± 0.46
HSS 0.232 ± 0.050 0.208 ± 0.037 0.234 ± 0.045 0.234 ± 0.047 0.186 ± 0.040 0.154 ± 0.035

To further substantiate our claims, we performed a paired t-test for the CSI and HSS
values of the ENSA and TCLA algorithms compared to the original FMIK method and
ERA5 product. The results provide robust statistical evidence supporting our assertion that
both the ENSA and TCLA algorithms outperform traditional methods in detecting freezing
precipitation (p-value < 0.05).



Climate 2024, 12, 224 10 of 19

Both the original FMIK algorithm and the ERA5 product demonstrated superior skill
only in terms of their probability of detection (POD) results. However, they overestimated
FZRA amounts by factors of 1.8 to 2.1 (see Table 3 regarding the bias metric), which limits
their applicability in climate studies. In contrast, the SKTA algorithm showed a lower bias
(bias = 1.01) while maintaining a POD value comparable to the other modified algorithms.
This advantage may allow the SKTA algorithm to more accurately reproduce average FZRA
frequency estimates over large regions, enhancing its utility in climatological assessments.

4. Application of the Freezing Precipitation Detection Algorithm
4.1. Freezing Precipitation Events Activity

To analyze the inter-annual variability of the spatially averaged freezing precipitation
activity over a twenty-year period, five areas characterized by high activity levels and
closely situated weather stations were selected (Figure 2). Based on their geographical loca-
tion, these areas were categorized into three continental regions (Areas 1–3) and two island
regions (Areas 4 and 5). The proximity of weather stations within these areas enhances the
likelihood of capturing the current synoptic process.

Area 1 includes weather stations in the south of China. During the calibration and
validation stages of the algorithms, three stations located at elevations exceeding 1000 m
above sea level, which recorded the highest amounts and durations of FZRA events, were
excluded due to significant topographic heterogeneity (see Section 3.2). Area 2 consists
of weather stations on the Korean Peninsula and Ulleungdo Island. Area 3 encompasses
stations in the Primorsky and Khabarovsky regions. Island weather stations are grouped
into Area 4, which includes Northern Honshu, Hokkaido, and the Southern Kuril Islands,
and Area 5 covers the Sakhalin Island.

The ability of the algorithms to reproduce the inter-annual variability of the spatially
averaged FZRA amount was evaluated using weather station observations across the five
designated areas. Additionally, the four algorithms developed in this study were compared
with the FMIK algorithm—the original method developed at the Finnish Meteorological
Institute—as well as with the ERA5 precipitation-type product.

In continental Areas 1 and 3, all algorithms and the ERA5 product demonstrated
a stable correlation with the weather station observations (Table 4). The SKTA algorithm
achieved the best results, with correlation coefficients of R = 0.96 for Area 1 and R = 0.89
for Area 3, and minimal root mean square error (σ) of 0.58 and 0.25, respectively. The
high correlation in Area 1 (R > 0.90 for all algorithms) is likely due to the large number of
weather stations and the ability of ERA5 to reproduce the conditions for FZRA occurrence.

Table 4. Evaluation of the algorithms’ ability to reproduce inter-annual variability of spatially
averaged freezing precipitation in the allocated areas (see Figure 2) compared to weather stations
observations. The coefficient of correlation (R), coefficient of determination (R2), and the root mean
square error (σ) were calculated for each area and for all areas together. The best statistics for the
corresponding algorithm are highlighted in bold.

Area 1 Area 2 Area 3 Area 4 Area 5 All Areas

R σ R σ R σ R σ R σ R R2 σ

T2MA 0.95 0.70 0.64 0.18 0.86 0.29 0.49 0.63 0.38 0.53 0.93 0.72 0.24
SKTA 0.96 0.58 0.30 0.19 0.89 0.25 0.51 0.47 0.41 0.41 0.95 0.80 0.20
TCLA 0.95 0.73 0.37 0.21 0.85 0.28 0.51 0.68 0.27 0.62 0.92 0.72 0.24
ENSA 0.95 0.63 0.44 0.20 0.86 0.27 0.47 0.65 0.37 0.56 0.93 0.70 0.25
FMIK 0.90 1.14 0.70 0.15 0.81 0.71 0.43 0.55 0.28 0.47 0.86 0.23 0.40
ERA5 0.92 1.28 0.28 0.61 0.74 0.61 0.36 0.47 0.27 0.41 0.89 −0.30 0.52
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In Area 2, only two algorithms showed stable correlations, one of which (FMIK) is not
regionally adapted. The FMIK algorithm achieved the highest correlation (R = 0.70), while
among the regional algorithms, T2MA was the most effective with R = 0.64. The relatively
poor performance of some algorithms may be attributed to the geographical location of the
Korean Peninsula, which extends far into the sea. Consequently, most weather stations in
Area 2 are located in coastal zones, where reanalysis indicates a shift in near-surface air
temperatures toward positive values (Figure 3c).

In island Areas 4 and 5, all algorithms exhibited weakly stable or unstable correlations
with large root mean square errors (Table 4). In Area 4, the SKTA and TCLA algorithms
performed best (R = 0.51), with SKTA having the lowest error (σ = 0.47). In Area 5, SKTA
achieved the maximum correlation (R = 0.41) with a minimum σ of 0.41.

Overall, in continental areas, the algorithms effectively reproduce the inter-annual
variability of spatially averaged FZRA activity. However, there was a significant decrease
in performance in the island areas. Although the Korean Peninsula is formally classified
as a continental area, its geographical position between continental and island regions
affected the efficiency of the algorithm. While nearly half of the algorithms yielded stable
correlations, the R values are lower than those in continental areas but higher than those in
island areas.

Among the regional algorithms, TCLA and ENSA were the most effective in detecting
FZRA events, while SKTA excelled in reproducing their spatially averaged inter-annual
variability, as evidenced by its optimal bias value of 1.01 (Table 3). The FMIK algorithm
and the ERA5 product demonstrated the best results in terms of the POD value (Table 3),
but they significantly overestimated the detected FZRA events due to the large number of
false alarms.

On average, across all areas, the algorithms exhibited a stable correlation, with R values
comparable to those observed in Area 1. This is likely due to the substantial contribution
of Area 1 to the total FZRA amount, which can be attributed to its dense network of
weather stations. However, the regional algorithms demonstrated even higher correlations.
The coefficients of determination indicate that only the T2MA, SKTA, TCLA, and ENSA
algorithms exhibited a significant relationship between model outputs and meteorological
observations, with R2 values ranging from 0.70 to 0.80.

The SKTA algorithm consistently provided the best results in reproducing the inter-
annual variability of FZRA events across almost all areas. In contrast, the FMIK algorithm
and the ERA5 precipitation-type product showed much lower R2 values, with the ERA5
product even exhibiting negative R2 values. The latter indicates that the predictions made
by the product perform worse than a simple mean-based prediction. In the context of this
study, this suggests that the ERA5 product failed to capture the inter-annual variability of
FZRA events over the Far East, possibly due to inherent biases (Table 3) and limitations in
its precipitation-type classification.

A comparative analysis of the inter-annual variability of FZRA events across the desig-
nated areas, based on meteorological observations and the SKTA algorithm, demonstrates
high effectiveness of the algorithm both for the entire area (R = 0.95, σ = 0.2, as shown
in Figure 4a) and specifically in Area 1 (R = 0.96, σ = 0.58, as shown in Figure 4b). The
analysis indicates that the algorithm consistently overestimated FZRA activity during peak
periods and underestimated it during low periods. In other areas, the model predominantly
underestimated FZRA activity, with exceptions in certain seasons.

In Area 2 (Figure 4c), given the weak correlation (R = 0.3), the algorithm significantly
underestimated FZRA activity in four cold seasons and did not detect it in eight ones. In
Area 3 (Figure 4d), the algorithm significantly overestimated FZRA activity during the
2020–2021 season and underestimated it during the 2023–2024 season. In the island regions,
Areas 4 (Figure 4e) and 5 (Figure 4f), there was a noticeable underestimation of FZRA
activity by the algorithm. It is noteworthy that in Area 4, FZRA was not detected only in
one season (2023–2024).
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Figure 4. Inter-annual variability of FZRA activity over 20 years based on weather station observations
(blue) and the algorithm (orange): (a) total FZRA events amount in five areas. (b) Area 1 (China).
(c) Area 2 (Korean Peninsula and Ulleungdo Isl.). (d) Area 3 (Primorsky and Khabarovsky regions).
(e) Area 4 (Northern Honshu, Hokkaido, and Southern Kuril Isl.). (f) Area 5 (Sakhalin). R—correlation
coefficient. σ—the root mean square error. The y axis is area-averaged mean FZRA amount per station.

4.2. Case Study

The effectiveness of the FZRA detection algorithms is shown by the case study of
a typical “southern” synoptic process in November. The November “southern” cyclones
coming out of northeastern China to the Primorsky and Khabarovsky regions usually create
conditions for FZRA events. The selected FZRA case is provided with nearly simultaneous
meteorological observations, upper-air sounding data, and satellite measurements, con-
tributing to a detailed examination. Moreover, the features of the FZRA evolution allowed
us to reveal both the strengths and weaknesses of the reanalysis-based diagnostic method.

An FZRA and ice glaze event, recorded at 12 weather stations in China and Russia on
7–9 November 2021, led to damage to power lines supports and broken wires. As a result,
21 settlements on Russian territory were left without electricity. This event was caused by
an active cyclone that occurred over China. As recorded in upper-air maps, the cyclone
developed under the front part of a deep upper-level trough, in the southern part of which
a deep upper-level depression formed. The expressed meridionality of the synoptic process
contributed to strong thermal asymmetry and, as a consequence, the advection of warm
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and humid air masses in front of the cyclone, as well as intense cold advection that occurred
in its rear.

As the cyclone moved northeast, freezing precipitation was observed on 7–8 November
at three weather stations in China and on 8–9 November at nine weather stations in Russia.
The FZRA information from 3 of the 12 weather stations is missing in the NOAA archive.
In general, four of the algorithms detected FZRA at seven of the nine weather stations,
which make up a total of 78% their overall efficiency. Of these, T2MA and TCLA detected
FZRA at five weather stations and ENSA at six ones, and the most effective was SKTA,
which detected FZRA at seven weather stations.

According to observations, 37 records of FZRA were made at seven weather stations.
As for the algorithms, T2MA and ENSA yielded 21 hits, as well as 12 and 11 false hits,
respectively. The best result was SKTA—which yielded 22 hits—the worst result was
shown by TCLA at 18 hits, and both algorithms yielded nine false hits. For comparison, the
ERA5 product yielded only 18 hits and 62 false hits. This is consistent with the tendency
of reanalysis to produce significantly more false FZRA detections than the algorithms
mentioned in Section 3.3.

Figure 5 demonstrates the cyclone location on the surface analysis map at 00 UTC
(Figure 5a) and its cloud system on the infrared image obtained by the AVHRR radiometer
onboard the MetOp-B satellite at 01:25 UTC (Figure 5b) on 8 November. On 7–8 November,
the weather stations in the Changchun and Harbin airports recorded FZRA continuously
for 9 h and 6 h, respectively. The weather station at the Khabarovsk airport recorded
FZRA and FZDZ events during the period of 20:30–13:30 UTC on 8–9 November with
interruption, taking into account when freezing precipitation lasted for about 5 h.

Figure 5. Surface analysis map of JMH (Japan Meteorological and Hydrographic Agency) at 00 UTC
(a); the cloud system of cyclone on the infrared image (band 4, 10.82 µm) obtained by AVHRR onboard
satellite MetOp-B at 01:25 UTC (b) on 8 November 2021.

The temporal variability graphs of meteorological elements for the periods on
5–10 November at the weather station records in the Harbin airport (Figure 6a) and on
6–11 November at the weather station records at the Khabarovsk airport (Figure 6b) show
a rapid decrease in the near surface air temperature one day before the FZRA onset in
Harbin and two days before its onset in Khabarovsk. In Harbin, the T2m decreased by 19 ◦C
(from 13 ◦C at 06 UTC on 5 November to −6 ◦C at 21 UTC on 6 November); in Khabarovsk,
it decreased by 18 ◦C (from 9 ◦C at 03 UTC to −9 ◦C at 18 UTC on 6 November). Then,
during the day before the FZRA started, an insignificant increase in the T2m was observed
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to values not higher than 0 ◦C. During the fallout, the T2m varied in the range from −2 ◦C
to −1 ◦C in Harbin and from −1 ◦C to 0 ◦C in Khabarovsk.

Figure 6. The temporal variability of meteorological elements (surface air temperature [red lines],
relative humidity [blue lines], wind speed and direction [black arrows]) approximately three days
before the onset of the FZRA, during precipitation, and approximately two days after its end in
Harbin (a) and Khabarovsk (b). The red vertical lines indicate the period of the freezing precipitation.

In Harbin, freezing precipitation detected by TCLA lasted from 23 UTC on 7 November
to 05 UTC on 8 November. According to radiosonde (RS) data recorded at 00 UTC on
8 November, there was an advective temperature inversion. The melting layer thickness was
about 570 m, with a maximum temperature of Tmax = 1.3 ◦C at an altitude of 1045 m, and the
freezing layer thickness was about 800 m, with a minimum temperature of Tmin = −5.9 ◦C
at an altitude of 684–732 m. According to the RS data recorded at 12 UTC on 8 November,
the melting layer lacked.

In Khabarovsk, freezing precipitation was detected by T2MA and continued intermit-
tently from 20:30 UTC on 8 November to 13:30 UTC on 9 November. According to the
RS data (not presented), at 12 UTC on 8 November, there was an advective temperature
inversion. The melting layer thickness was registered at about 700 m, with Tmax = 2.6 ◦C
at an altitude of 934 m. The freezing layer thickness was registered at about 450 m, with
Tmin = −2.7 ◦C at an altitude of 337 m.

At 00 UTC on 9 November, the melting layer thickness increased by more than 1400 m,
and the Tmax increased to 5.6 ◦C at an altitude of 818 m. In this case, the freezing layer
thickness decreased to about 190 m, and the Tmin dropped to −2.1 ◦C and was recorded
at an altitude of 258 m. At 12 UTC on 9 November, the melting layer thickness began to
decrease and was registered at about 680 m, with Tmax = 4.2 ◦C at an altitude of 667 m, and
the freezing layer thickness was registered at 170 m, with Tmin = −2.1 ◦C at an altitude of
242 m. At 00 UTC on 10 November, the normal gradient with negative temperature values
came back.

Less than a day before the FZRA started, a rapid increase in relative air humidity
to 90–100% was recorded at both stations (Figure 6). After freezing precipitation ceased,
the T2m did not rise above 0 ◦C, the RH exceeded 80%, and freezing fog was recorded in
Khabarovsk. The wind changed direction from southeast to north 56 h before the FZRA
onset in Harbin and from southwest to northeast 21 h before in Khabarovsk, which would
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be associated with a slowdown in the cyclone’s movement speed. Freezing precipitation
fell with weak and moderate northeastern winds.

Based on the RS and ERA5 data, vertical profiles of air temperature T (stratification
curve: red) and dew points Td (green) were obtained for Harbin and Khabarovsk (Figure 7).
The solid line denotes the T and Td registered from the ERA5 data, and the dotted line
denotes the RS data. The T and Td vertical profiles show favorable conditions for FZRA.
According to the ERA5 data at 00 UTC on 8 November, in Harbin, the freezing layer with
a thickness of 100 hPa was clearly defined in the negative temperatures area (Figure 7a).
The air temperature in the melting layer with a thickness of about 70 hPa was in the range
of 0–1 ◦C. The distribution of the T, Td, and the thicknesses of the freezing and melting
layers are in good agreement with the RS data for the same period.

Figure 7. Vertical profiles on skew-T diagram of air temperature (red) and dew point temperature
(green) from ERA5 (solid lines) and upper-air sounding (dashed lines) at 00 UTC on 8 November
2021 in Harbin (a); at 23 UTC on 8 November 2021 (b); and at 12 UTC on 9 November 2021 in
Khabarovsk (c).

A comparative analysis of the T and Td vertical profiles from the ERA5 data at 23 UTC
on 8 November and RS data at 00 UTC on 9 November in Khabarovsk demonstrates
a coincidence of the freezing layers thickness values of 30 hPa (Figure 7b). The air temper-
ature in the freezing layer derived from the ERA5 data is 1 ◦C higher than that of the RS
data, but it did not exceed 0 ◦C. It corresponds to the threshold values of the algorithm.
The stratification curves derived from the ERA5 and RS data practically coincide in the
melting layer and further up to the tropopause.

At 12:00 UTC on 9 November, freezing rain began to weaken and transformed into
freezing drizzle (FZDZ). The RS vertical temperature profile shows that the freezing and
melting layers were clearly defined, while according to the ERA5 data, the air temperature
was shifted to the positive values area (Figure 7c). Thus, despite the favorable conditions
for freezing precipitation and their presence according to meteorological observations, they
were not detected either by the algorithms or by reanalysis.

5. Discussion and Conclusions

This study introduced four regional algorithms for detecting FZRA in the Far East
region, encompassing part of China, the Korean Peninsula, the Ulleungdo Island, Japan,
and part of the Russian Far East region. These algorithms were developed using the ERA5
dataset and standard meteorological measurements over 20 cold seasons (September–May)
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from 2004 to 2024. Previous studies on freezing precipitation in the Far East have been
limited in scope, lacking comprehensive climate research. These regional algorithms are
intended for use in climate and statistical studies of freezing precipitation in this area.

We utilized the FZRA detection method proposed by Kämäräinen et al. [28] and
calibrated optimal threshold values for the ERA5 environmental parameters, such as the
near-surface air temperature, vertical profiles of temperature and relative humidity, surface
precipitation rate, and surface pressure, to effectively identify the conditions favorable for
FZRA occurrence.

To improve the diagnostic algorithm’s applicability to the ERA5 dataset, we imple-
mented modifications, including replacing the near-surface temperature metric with the
ERA5 land skin temperature metric, as well as incorporating the minimum temperature
metric from the near-surface cold layer, following a traditional top-down approach com-
monly used in weather forecast centers [47]. Additionally, a majority voting ensemble
(MVE) technique was applied to integrate outputs from multiple algorithms, enhancing
classification accuracy.

Validation of the modified algorithms (T2MA, TCLA, SKTA, and ENSA) showed
significant improvements over the original method FMIK developed at the Finnish Meteo-
rological Institute. The ENSA algorithm, based on the majority voting ensemble technique,
achieved the best verification statistics, with percentage increases in the CSI (HSS) quality
measure of 66% (51%) and 21% (18%) compared to the ERA5 precipitation-type product
and the FMIK algorithm, respectively. Furthermore, the SKTA algorithm demonstrated
a notable advantage in reproducing average estimates of FZRA frequency across large
regions, thereby enhancing its utility in climatological assessments. It is important to note
that the calibrated threshold values, while physically justified, were adjusted based on
ERA5 data and are thus sensitive to potential model biases. This sensitivity partly explains
the significant discrepancies with the threshold values reported by Kämäräinen et al. [28].

The regional algorithms developed in this study effectively reproduced the inter-
annual variability of spatially averaged FZRA activity in continental areas, with correlation
coefficients ranging from 0.95 to 0.96. However, their effectiveness decreased significantly
in island regions, where their correlation coefficients range from 0.27 to 0.51. The Korean
Peninsula, due to its geographical location, serves as a transition zone between continental
and island conditions, impacting algorithm performance with correlation coefficients
between 0.44 and 0.64. This reduced effectiveness is attributed to the concentration of
weather stations in coastal areas, where ERA5 data show a marked shift in surface air
temperature towards positive values (Figure 3c). Notably, the FMIK algorithm exhibited
the highest correlation on the Korean Peninsula and Ulleungdo Island (R = 0.70), while
among regional algorithms, T2MA was the most effective (R = 0.64).

The coefficients of determination (R2) indicate significant predictive validity for the
regional algorithms, varying between 0.70 and 0.80. In contrast, low R2 values for the FMIK
algorithm and negative values for the ERA5 product suggest weak or absent predictive
validity. While the TCLA and ENSA were most effective in detecting FZRA, the SKTA
excelled in reproducing spatially averaged inter-annual variability, as evidenced by its
optimal bias value (bias = 1.01) compared to the other regional algorithms (Table 3). A com-
parative analysis of inter-annual variability, based on the meteorological observations and
SKTA, demonstrated high algorithm effectiveness across all areas, with an overestimation
at FZRA activity peaks and an underestimation at the minima. In other regions, the SKTA
underestimated the FZRA activity in approximately 50% of the seasons.

The effectiveness of regional algorithms was further demonstrated in a case study
examining the dates of 7–9 November 2021 at weather stations in China and Russia. Out of
37 FZRA records, the T2MA and ENSA yielded 21 hits, with 12 and 11 false hits recorded,
respectively. The SKTA yielded 22 hits, and the TCLA yielded 18 hits, and each one yielded
nine false hits. The ERA5 product yielded 18 hits but also 62 false hits, highlighting its
tendency to overpredict FZRA events compared to the algorithms.
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The key quality indicators of the regional freezing precipitation detection algorithms
suggest their potential use in both operational activities and climatological assessments.
With comparable scores for the CSI, POD, and SR metrics (Table 3), the TCLA and ENSA
yielded slightly better results in FZRA detection. For climatological and statistical assess-
ments, the SKTA is preferable due to its superior performance in average estimates. In
addition, the developed regional algorithms can be used to assess the inter-annual and
long-term variability of freezing precipitation event activity in the Far East region.
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