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Abstract—We consider a spectral problem for a dynamical system describing, in the Schrödinger
variables, the motion in a finite homogeneous chain of coupled harmonic oscillators with boundary
conditions that admit dissipation and energy pumping in the system. The solution of this problem is
given for arbitrary parameter values in the boundary conditions and for any sufficiently large number
of oscillators in the chain.
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1. INTRODUCTION

A chain of coupled harmonic oscillators, or, briefly, a harmonic chain, is the simplest physical body
model serving to describe one-dimensional oscillatory processes in the harmonic approximation [1].
For example, this model is well known to be used as early as by Newton to calculate the speed of
sound in air [2]. Its present popularity is related to attempts to substantiate Fourier’s law of thermal
conductivity [3], [4].

The adequate application of this model is hindered by the lack of known exact solutions in a number
of cases relevant for physical applications, for example, when dissipation is admitted at the ends of the
chain. This case is important, for example, when modelling heat baths on the boundaries of a solid [3], [5].
In the absence of exact solutions, the structure of the eigenoscillations of the chain and the description
of invariant subspaces of its dynamic equations come to the fore. In other words, solving the spectral
problem for the harmonic chain becomes a must. The solution of this problem permits one to make
conclusions about the types of motion in the chain, say, from the viewpoint of stability theory and
provides opportunities for obtaining solutions of the chain dynamic equations in acceptable form.

The present paper deals with the spectral problem for the dynamical system of a homogeneous
harmonic chain with dissipation and/or energy pumping at the boundaries. Mathematically, this
problem belongs to the class of matrix spectral problems with a tridiagonal matrix. For example, the
classical matrix spectral problem deals with a Jacobi matrix, which is a symmetric tridiagonal matrix
with positive off-diagonal entries. It is this type of matrix that is associated with the dynamical system
of a (generally, inhomogeneous) harmonic chain. This class of problems has been widely studied, for
example, in connection with problems of oscillation theory [6], [7], inverse spectral problems [7]–[11],
the theory of orthogonal polynomials [12], [13], and a number of other problems.

However, just as in the case of the harmonic chain, matrix spectral problems have mainly been
considered for the conservative case. The spectral properties of dissipative Jacobi matrices have turned
out to be difficult to study. For example, the solution of the inverse spectral problem for a Jacobi matrix
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with dissipation has been obtained relatively recently and only for the case in which the dissipation is
specified at one of the ends of the main diagonal of the matrix [14], [15]. Apparently, the solution of
this problem for the case in which the dissipation is specified at both ends of the main diagonal is yet
to be found, and in our opinion, this is due to the lack of an adequate solution of the direct spectral
problem. Thus, it is of interest first to solve the spectral problem for the case of a homogeneous matrix
with dissipation at two ends.

We solve this problem in the following sense. The location of the roots of the characteristic polynomial
of the system matrix on the complex plane is described for arbitrary parameter values in the boundary
condition and for any sufficiently large number of oscillators in the chain. Conditions for these roots to
be simple are obtained, and the stability domain of the characteristic polynomial is found. We describe
the eigenvectors of the system matrix and establish their orthogonality and completeness.

Our approach to the problem has the following specific feature. Already in the original dynamic
equations, we replace the natural variables describing the oscillator displacements from the equilibrium
position by the Schrödinger variables [16]–[18], which describe the relative displacements of neighbor-
ing oscillators and the oscillator velocities. After this replacement, the chain equations become a linear
dynamical system whose matrix, in the absence of dissipation, is a tridiagonal antisymmetric matrix. The
addition of dissipation leads to the occurrence of nonzero diagonal entries. In our opinion, the analysis
of the spectral problem for such a matrix is more natural than for the original problem.

Apart from the introduction, the paper contains Sec. 2, where the statement of the problem is given,
and four main sections: on the location of the roots, their multiplicity, the stability of the characteristic
polynomial, and the orthogonality and completeness of the system of eigenvectors (Secs. 3–6). The
appendix (Sec. 7) presents the system of equations of the harmonic chain in the original natural variables
and the transformation of this system to the Schrödinger variables.

2. STATEMENT OF THE PROBLEM

The motion of oscillators in a homogeneous harmonic chain with dissipation and pumping at the
boundaries is described in the Schrödinger variables by the linear dynamical system (see Sec. 7)

ẋl = xl+1 − xl−1, l = 0, . . . , N − 1, (2.1)

x−1 + bx0 = 0, xN − cxN−1 = 0, b, c ∈ R, (2.2)

or, in matrix form, ẋ = Ax, where

x =

⎛
⎜⎜⎜⎜⎜⎝

x0
x1
...

xN−2

xN−1

⎞
⎟⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎜⎝

b 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 c

⎞
⎟⎟⎟⎟⎟⎠

.

The spectral problem associated with this dynamical system is given by the system of equations

λyl = yl+1 − yl−1, l = 1, . . . , N − 2,

λy0 = by0 + y1,

λyN−1 = −yN−2 + cyN−1,

(2.3)

or, in matrix form,

Aγ = λγ, γ =

⎛
⎜⎜⎜⎝

y0

. . .

yN−1

⎞
⎟⎟⎟⎠ .

We represent (2.3) in a form similar to (2.1), (2.2), that is, as the boundary value problem

λyl = yl+1 − yl−1, l = 0, . . . , N − 1, (2.4)

y−1 + by0 = 0, yN − cyN−1 = 0, b, c ∈ R. (2.5)
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Remark 1. In operator form, following, e.g., [19], system (2.3) is represented as the spectral problem

Ay = λy

for the second-order difference operator

Ayl = yl+1 − yl−1, l = 1, . . . , N − 2,

Ay0 = y1 − y−1 + by0,

AyN−1 = yN − yN−2 + cyN−1

(2.6)

acting on the space of functions of the integer argument l = −1, . . . , N with the Dirichlet boundary
conditions

y−1 = yN = 0.

In formula (2.6), the notation

Ayl = (Ay)l, yl = y(l)

is used.

The aim of the present paper is to study the eigenvalues and eigenvectors of the matrix A for arbitrary
values of the parameters b and c and any sufficiently large N depending on these parameters. In
particular, we intend to describe the eigenvalue location on the complex plane as N → ∞, determine the
conditions for the eigenvalues to be simple, find the stability domain of the characteristic polynomial of
the matrix A, and establish conditions for the orthogonality and completeness of the eigenvector system.

This problem can conveniently be solved using the technique of finite orthogonal polynomials [10],
[12], [13]. Thus, we introduce the sequence of polynomials pl(λ), l = −1, . . . , N , whose elements are
defined by the expressions

pl = yl, l = −1, . . . , N − 1,

pN = yN − cyN−1,
(2.7)

where yl, l = −1, . . . , N , is the solution of the recurrence relation

λyl = yl+1 − yl−1, l = 0, 1, . . . , (2.8)

with the initial conditions

y−1 = −b, y0 = 1.

In terms of these polynomials, the eigenvalues and eigenvectors are described as follows.

Proposition 1. One has

pl(λ) = (−1)l det(Al − λI), l = 1, . . . , N, (2.9)

where Al is the lth principal leading submatrix of A and I is the identity matrix of appropriate
size. Therefore, pN (λ) is the characteristic polynomial of A, and the eigenvalues of A are the roots
of this polynomial.

The eigenvectors of the matrix A can be represented in the form

γk =

⎛
⎜⎜⎜⎝

p0(λk)

. . .

pN−1(λk)

⎞
⎟⎟⎟⎠ , 0 ≤ k ≤ N − 1, (2.10)

where the λk are the eigenvalues of A.

Proof. Expanding the determinant in (2.9) along the last row, we see that for l < N both sides of this
relation are solutions of the same initial value problems for Eq. (2.8). This proves (2.9) for l �= N in view
of the uniqueness of the solution. Now Eq. (2.9) for l = N follows from (2.7). The expression (2.10)
follows from (2.7) and (2.8).
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Along with the polynomials pl(λ), we use the polynomials Pl(λ) defined as pl(λ) with b = c = 0.
Then one has

pl = Pl − bPl−1,

pN = PN − (b+ c)PN−1 + bcPN−2, l = 0, . . . , N − 1.
(2.11)

It is convenient to represent the polynomials pl(λ) as functions of the spectral variable z related to
the natural spectral variable λ by the formula

λ = z − 1

z
.

Lemma 1. One has

Pl

(
z − 1

z

)
=

z2l+2 + (−1)l

zl(1 + z2)
, l = −1, . . . , N − 1, (2.12)

and consequently,

pN

(
z − 1

z

)
=

z2N (z − b)(z − c) + (−1)N (1 + bz)(1 + cz)

zN (1 + z2)
. (2.13)

Proof. Both sides of Eq. (2.12) for λ = z − 1/z satisfy Eq. (2.8) and the same initial conditions. This
proves (2.12) in view of the uniqueness of the solution of the initial value problem for this equation.
Equation (2.13) can be obtained by substituting (2.12) into (2.11).

We write

pN (z) = z2N (z − b)(z − c) + (−1)N (bz + 1)(cz + 1) (2.14)

and also refer to pN (z) as the characteristic polynomial. Clearly, studying the roots of pN (z) is essentially
equivalent to studying the roots of pN (z).

3. LOCATION OF THE ROOTS AS N → ∞
Figure 1 shows the roots of the polynomial (2.14) for small and relatively large N . We see that all but

four roots in Fig. 1(b) lie near the unit circle. This is a typical behavior of the roots as N → ∞. Numerical
experiment shows that for given b and c and for an arbitrarily small ε > 0 there exists an N0 ∈ N such
that all but at most four roots of the polynomial pN (z) lie in an annulus of width 2ε for all N > N0.

���

0 1

���

0 1

|r − 1|<ε

Fig. 1. The roots of the polynomial pN(z) on the complex plane: (a) for b = c = −2 and N = 5; (b) for b = −2,
c = −3/2, and N = 15. The dotted lines enclose the annulus containing roots close to the unit circle.

Next, we justify the numerical results analytically.

Lemma 2. The polynomial p(z) is self-dual; that is,

p(z) = (−1)Nz2N+2p

(
−1

z

)
.
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Proof. The proof is by a straightforward verification.

This lemma means that the roots of the polynomial p(z) form pairs of roots z and −1/z, which are
dual to each other.

Remark 2. The paper uses the terms “dual roots” and “dual polynomials,” which are not commonly
recognized. The closely related terms “reciprocal roots” and “reciprocal polynomial” are not suitable
because of the minus sign at 1/z.

Lemma 3. For b = c, the polynomial pN (z) has the factorization

pN (z) = [zN (z − b)− (1 + bz)][zN (z − b) + (1 + bz)] for odd N,

pN (z) = [zN (z − b)− i(1 + bz)][zN (z − b) + i(1 + bz)] for even N.
(3.1)

Proof. The proof is by a straightforward verification.

Theorem 1. As N → ∞, all roots of the polynomial pN (z) except at most two pairs of dual roots
tend to 1 in absolute value. The exceptional roots are described as follows.

(i) If |b| > 1 and |c| > 1, then these roots are distinct; one root tends to b, one root tends to c,
and the third and fourth roots tend to the respective dual values. These four roots are real
for b �= c as well as for b = c and odd N ; for b = c and even N , they are strictly complex.

(ii) If |b| > 1 and |c| ≤ 1, then there exist two real roots, one of which tends to b and the other,
to the dual value. A similar statement holds with interchanged b � c.

(iii) If |b| ≤ 1 and |c| ≤ 1, then there exist no exceptional roots.

Proof. Set r = |z|. Take b, c, and an ε0 > 0 such that the annulus |r − 1| ≤ ε0 does not contain the
points b and c and the dual points −1/b and −1/c provided that b, c �= ±1. Obviously, any narrower
annulus

|r − 1| ≤ ε, ε > 0, (3.2)

where ε < ε0 (see Fig. 1b), satisfies this property as well. We must show that for any ε < ε0 there exists
an N0 such that, for all N > N0, all but at most four roots of the polynomial p(z) lie in the annulus (3.2)
and assertions (i)–(iii) hold. For convenience, we split the proof into parts.

1. In this part and part 2, we show that for any ε > 0 and all sufficiently large N all but at most four roots
of the polynomial pN (z) lie in the annulus (3.2).

Set

fN (z) = z2N (z − b)(z − c), gN (z) = (−1)N (1 + bz)(1 + cz). (3.3)

On the boundary circle r = 1− ε of the annulus (3.2), we have

|fN (z)| ≤ r2N (r + |b|)(r + |c|) → 0, N → ∞;

|gN (z)| ≥ |(1− |b|r)(1− |c|r)| = δ > 0,
(3.4)

where δ is independent of N . The estimates (3.4) are satisfied because b, c, and their dual points do not
lie on the circle. Take an N0 in such a way that the inequality

|fN (z)| < |gN (z)| (3.5)

is satisfied on this circle for all N ≥ N0. This is possible by virtue of the estimates (3.4). Applying
Rouché’s theorem to the polynomials (3.3) and taking into account (3.5), we see that the number of roots
of the polynomial pN (z) in the disk r < 1− ε coincides with that of the roots of the polynomial gN (z).
The latter polynomial, and hence the polynomial pN (z) as well, has two roots if |b| > 1 and |c| > 1, one
root if |b| > 1 and |c| ≤ 1, and no roots if |b| ≤ 1 and |c| ≤ 1.

MATHEMATICAL NOTES Vol. 116 No. 4 2024



SPECTRAL PROBLEM FOR A HARMONIC CHAIN 605

2. The circle r = 1 + ε can be considered in a similar way. On thus circle, we have

|fN (z)| ≥ r2N |(r − |b|)(r − |c|)| → ∞, N → ∞,

|gN (z)| ≤ (1 + |b|r)(1 + |c|r),
and therefore, there exists an N0 such that

|gN (z)| < |fN (z)| for all N ≥ N0.

By Rouché’s theorem, the numbers of roots of the polynomials pN (z) and fN (z) in the disk r < 1 + ε
coincide. The latter polynomial, and hence pN (z) as well, has 2N roots if |b| > 1 and |c| > 1, 2N + 1
roots if |b| > 1 and |c| ≤ 1, and 2N + 2 roots if |b| ≤ 1 and |c| ≤ 1.

3. It is convenient to refer to the roots that lie outside the annulus (3.2) for any ε > 0 and all sufficiently
large N as “exceptional roots.” In this part of the proof, we show that the exceptional roots are separated
for |b| > 1 and |b| �= |c|.

If |c| ≤ 1, then we have only two exceptional roots. These roots are dual and not equal to ±i, and
hence they are separated. If |c| > 1, then we have four exceptional roots. To be definite, take |b| < |c| and
consider a circle whose radius satisfies the relation

|b| < r = |c| − ε1, ε1 > 0.

For sufficiently small ε1, this circle separates b and c. By repeating the argument in part 2 of the proof
for this circle, we see that the polynomial pN (z) has exactly 2N − 1 roots inside the circle for sufficiently
large N . Since there are exactly two roots outside the circle r = 1− ε, we conclude that the circle
separates these roots. The exceptional roots inside the circle r = 1− ε are dual to the roots considered
above and hence are separated as well.

4. In this part of the proof, we consider the case of |b| > 1 and |b| �= |c|, prove that the exceptional roots
are real in this case, and find their accumulation points as N → ∞.

Assume that there exists a complex root. Then its complex conjugate is a root as well. These roots
cannot be separated by a circle centered at zero, which contradicts part 3 of the proof. Therefore, these
roots are real.

Let us show that if |c| > 1, then the roots tend to b, c, and their dual values. Consider the circle
r = 1− ε in part 1. We already know that as N → ∞ the polynomial pN (z) has exactly two roots in
the disk r < 1− ε. An estimate similar to the first one in (3.4) shows that fN (z) → 0 for these roots.
Consequently, gN (z) → 0 for these roots. It follows that the roots tend to −1/b and −1/c as N → ∞.
Accordingly, the dual roots tend to the dual values. By part 3, the limit values of the roots are separated.
The case of |c| ≤ 1 can be considered in a similar way.

5. In this final part of the proof, we consider the case of b = c. Under this condition, pN (z) factorizes as
in (3.1). By reproducing the arguments in parts 1 and 2 for the factors, we conclude that for each factor
there exist exactly two distinct exceptional roots for |b| > 1, and there exist no such roots for |b| ≤ 1. The
exceptional roots of the two equations (3.1) are distinct, because the factors are dual to each other for
odd N and complex conjugate for even N . Note that the roots cannot be multiple, because a multiple
root would be a root of both factors, which can be verified to be impossible. Thus, the exceptional roots
are real for odd N and complex conjugate for even N .

Remark 3. For b+ c = 0, all roots of the polynomial pN (z) lie on the unit circle. This follows from the
fact that the polynomial pN (z) is even for b+ c = 0.

We conclude this section by describing the location of roots of the polynomial pN (λ) as N → ∞.

Theorem 2. As N → ∞, almost all roots of the polynomial pN (λ) tend to the closed interval
2i ≤ λ ≤ 2i. There exist at most two exceptional roots, which can be described as follows.

(i) If |b| > 1 and |c| > 1, then these roots are distinct; one of them tends to b− 1/b, and the
other to c− 1/c. For b �= c, as well as for b = c and odd N , these roots are real; for b = c and
even N , they are strictly complex and complex conjugate.

(ii) If |b| > 1 and |c| ≤ 1, then there exists one real root tending to b− 1/b. A similar statement
is true with b and c interchanged.

(iii) If |b| ≤ 1 and |c| ≤ 1, then there exist no such roots.
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4. SIMPLICITY OF ROOTS

In this section, we show that for arbitrarily chosen b and c (except for b = −c = ±1) and for all
sufficiently large N the polynomial pN (z) has no multiple roots.

Lemma 4. The multiple roots of the polynomial pN (z), if any, are also roots of the polynomial

mN (z) = 2N(z − b)(z − c)(1 + bz)(1 + cz) + z(1 + bc)[(b + c)z2 + 2(1 − bc)z − b− c]. (4.1)

Proof. The multiple roots of pN (z) are also roots of the polynomial

ṗN (z) = 2Nz2N−1(z − b)(z − c) + z2N (2z − b− c) + (−1)N (2bcz + b+ c).

Assuming that b and c are not roots of pN (z), we eliminate z2N from the system of equations pN (z) = 0,
ṗN (z) = 0 to obtain (4.1). If, say, b is a root of pN (z), then a verification shows that the condition
pN (b) = 0 implies bc = −1; i.e., (4.1) is also satisfied in this case.

Remark 4. The roots of the polynomial mN (z) can be found explicitly, without resorting to known meth-
ods for solving algebraic equations of the fourth degree. This happens because the polynomial mN (z) is
self-dual,

z4mN

(
−1

z

)
= mN (z),

and hence can be expressed via the natural spectral variable,

m(λ) = 2N(bλ+ 1− b2)(cλ+ 1− c2) + (1 + bc)[(b+ c)λ+ 2(1 − bc)].

Lemma 5. If bc = −1, then the polynomial pN (z) has multiple roots only for |b| = 1 and even N .
These are the roots z = ±1 of multiplicity two.

Proof. For bc = −1, we have

pN (z) = (z − b)(z + 1/b)[z2N − (−1)N ],

whence the assertion of the lemma follows.

Lemma 6. If b �= c and bc �= −1, then the roots of the polynomial mN (z) have the following
asymptotics as N → ∞:

z = b− b

2N
+ · · · , z = c− c

2N
+ · · · ,

z = −1

b
− 1

2bN
+ · · · , z = −1

c
− 1

2cN
+ · · · ,

(4.2)

where the dots stand for terms with higher powers of 1/N .

For b = c, the corresponding asymptotics have the form

z = b, z = −1

b
, z = b− b

N
+ · · · , z = −1

b
− 1

bN
+ · · · . (4.3)

Proof. The expansions (4.2) and (4.3) can be verified by substituting them into (4.1) and then
calculating the asymptotics as N → ∞.

Theorem 3. For any b and c except for b = −c = ±1, there exists an N0 ∈ N such that the
polynomial pN (z) has no multiple roots for any N > N0. In the case of b = −c = ±1, multiple
roots exist only for even N ; these are double roots ±1.
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Proof. Let us show that the estimates (4.2), (4.3) are inconsistent with the behavior of the roots of the
polynomial pN (z) as N → ∞. Consider, say, the first estimate in (4.2). Substituting it into (2.14) and
calculating the asymptotics, we obtain

pN (z) = b2N
[
−b(b− c)

2eN
+ · · ·

]
, |b| > 1,

pN (z) = (−1)N (1 + b2)(1 + bc) + · · · , |b| ≤ 1;

i.e., pN (z) �= 0. The remaining estimates can be considered in a similar way. The case of b = −c = ±1
is considered in Lemma 5.

In terms of the natural spectral variable, Theorem 3 can be stated as follows.

Theorem 4. For arbitrary b and c except for b = −c = ±1 and for all sufficiently large N , the
polynomial pN (λ) has no multiple roots. In the case of b = −c = ±1, there exists a multiple root
only for even N ; it is unique and is equal to zero.

5. STABILITY OF THE CHARACTERISTIC POLYNOMIAL
A polynomial is said to be stable if all of its roots lie in the open left complex half-plane. In this section,

we study the stability of the polynomial pN (λ) as a function of the parameters b and c. For the stability
criterion we take the following statement. This is a slightly modified version of [20, Theorem XVII] or
the corresponding statement in [21, Theorem 9.11].

Theorem 5. Let p be a real polynomial, and let p = pI + pII be its decomposition into even and
odd parts. The polynomial p is stable if and only if the leading coefficients of the polynomials pI

and pII have the same sign and their roots are imaginary and simple and satisfy the interlacing
property.

According to this criterion, we decompose the polynomial pN (λ) into an even part (a polynomial with
even powers of λ) and an odd part (a polynomial with odd powers of λ) and write

pN (λ) = pIN (λ) + pIIN (λ), (5.1)

pIN (λ) = PN (λ) + bcPN−2(λ), pIIN (λ) = −(b+ c)PN−1(λ). (5.2)

The polynomials pIN (λ) and pIIN (λ) inherit a number of properties of the polynomials PN (λ). In
particular, they satisfy the identities

pIl (−λ) = (−1)lpIl (λ), pIIl (−λ) = (−1)l+1pIIl (λ). (5.3)

The stability analysis is rather cumbersome. Therefore, we split it into several small parts stated as
lemmas.

Lemma 7. For b+ c ≥ 0, as well as for bc < −1 and even N , the polynomial pN (λ) is unstable. For
bc = −1, the polynomial pN (λ) is unstable for any N .

Proof. If b+ c > 0, then, according to (5.1) and (5.2), the leading and the next coefficients of the
polynomial pN (λ) have opposite signs, and therefore, the Stodola condition is not satisfied for the
polynomial [22]. In a similar way, it follows from (5.2) and (2.12) that for even N the constant term
of the polynomial pIN (λ) has the form 1 + bc, and therefore, for bc < −1 the Stodola condition is not
satisfied for pN (λ) either.

If b+ c = 0, then pIIN = 0, and consequently, the stability criterion in Theorem 5 is violated. For
bc = −1, the roots of the polynomial pN (λ) = 0 can be calculated explicitly.

Lemma 8. For b+ c �= 0, the roots of the polynomial pIIN (λ), N ≥ 2, have the form

λk = −2i cos
πk

N
, k = 1, . . . , N − 1, (5.4)

and therefore, they are imaginary and simple and lie on the interval [λ1, λN−1].
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Proof. According to (2.12), the roots of the polynomial pIIN (λ) are solutions of the equation

z2N − (−1)N = 0

for z except for the zeros z = ±i. We represent the roots in the form

zk = e−
iπ
2 +

iπk
N , k = 1, . . . , N − 1. (5.5)

Passing to the variable λ, we obtain (5.4).

Lemma 9. The polynomial pIN (λ) takes the following values on the roots of the polynomial pIIN (λ),
N ≥ 2, ordered according to (5.4):

pIN (λk) = (−i)N (1 + bc)(−1)k, k = 1, . . . , N − 1. (5.6)

Therefore, between any two adjacent roots of the polynomial pIIN (λ) there exists at least one root
of the polynomial pIN (λ).

Proof. To obtain (5.6), we need to express pIN (λ) via z and substitute (5.5) into the resulting expression.
The calculations are simplified if we note that PN (λk) = PN−2(λk).

Lemma 10. For bc < −1 and odd N ≥ 2, the polynomial pN (λ) is unstable.

Proof. For odd N , the coefficient of λ in the polynomial pIN (λ) is calculated as follows:

dpIN (λ)

dλ

∣∣∣
λ=0

=
[(dλ

dz

)−1dpIN (λ)

dz

]
z=±1

=
1

2

dpIN (λ)

dz

∣∣∣
z=±1

=
1

2

d

dz

[z2N+2 + (−1)N

zN (1 + z2)
+ bc

z2N−2 + (−1)N

zN−2(1 + z2)

]
z=±1

=
1

2
[N + 1 + bc(N − 1)].

We see that for

bc < −N + 1

N − 1

this coefficient is negative, and therefore, the Stodola condition is violated for the polynomial pN (λ); i.e.,
pN (λ) is unstable.

Assume that

−N + 1

N − 1
< bc < −1.

In this case, the coefficient in question is positive, and

pIN (±i0) =
±i0

2
[N + 1 + bc(N − 1)]. (5.7)

On the other hand, in accordance with (5.6), on the roots λ(N±1)/2 of pIIN (λ) closest to zero, the
polynomial pIN (λ) takes the values

pIN
(
λ(N±1)/2

)
= ±i(1 + bc). (5.8)

Comparing the values (5.7) and (5.8), we find that the polynomial pIN(λ) changes sign three times on
the interval

λ(N−1)/2 < λ < λ(N+1)/2;

i.e., the roots of the polynomials pIN (λ) and pIIN (λ) do not satisfy the interlacing property.
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The subsequent stability analysis is based on the technique of finite orthogonal polynomials.

Lemma 11. Let yl(λ) be a solution of the recurrence relation (2.8). The following identities hold:
∣∣∣∣
yl−1(λ) yl−1(μ)

yl(λ) yl(μ)

∣∣∣∣ = (−1)l
∣∣∣∣
y−1(λ) y−1(μ)

y0(λ) y0(μ)

∣∣∣∣+ (λ− μ)

l−1∑
l′=0

(−1)l−l′yl′(λ)yl′(μ), (5.9)

∣∣∣∣
ẏl−1(λ) yl−1(λ)

ẏl(λ) yl(λ)

∣∣∣∣ = (−1)l
∣∣∣∣
ẏ−1(λ) y−1(λ)

ẏ0(λ) y0(λ)

∣∣∣∣+
l−1∑
l′=0

(−1)l
′−l[yl′(λ)]

2. (5.10)

Proof. Let us write (2.8) for two arguments,

λyl(λ) = yl+1(λ)− yl−1(λ),

μyl(μ) = yl+1(μ)− yl−1(μ),

and subtract the second equation multiplied by yl(μ) from the first equation multiplied by yl(λ). We
obtain the recurrence relation

(λ− μ)yl(λ)yl(μ) =

∣∣∣∣
yl+1(λ) yl+1(μ)

yl(λ) yl(μ)

∣∣∣∣+
∣∣∣∣
yl(λ) yl(μ)

yl−1(λ) yl−1(μ)

∣∣∣∣ ,

whose solution is given by (5.9). Identity (5.10) follows from (5.9) by l’Hôpital’s rule.

Lemma 12. For bc > −1, the roots of the polynomial pIN (λ) are imaginary and simple.

Proof. Assume that the root λ of the polynomial pIN (λ) has a nonzero real part; that is, λ+ λ̄ �= 0.
Applying formula (5.9) to this polynomial with μ = −λ̄, we obtain∣∣∣∣∣

pIN−1(λ) pIN−1(−λ̄)

pIN (λ) pIN (−λ̄)

∣∣∣∣∣ = (−1)N
∣∣∣∣
−bcλ bcλ̄

bc+ 1 bc+ 1

∣∣∣∣+ (λ+ λ̄)

N−1∑
l=0

(−1)N−lpIl (λ)p
I
l (−λ̄)

= (−1)N (λ+ λ̄)
[
1 + bc+

N−1∑
l=1

pIl (λ)p
I
l (λ̄)

]
,

where, in the last equality, we have used (5.3). The left-hand side of this chain of equalities, when
taking into account (5.3), is zero, and the right-hand side is nonzero for bc > −1. We have arrived at
a contradiction. Consequently, all roots of the polynomial pIN (λ) are imaginary for bc > −1.

To prove that the roots are simple, one follows a similar scheme using identity (5.10) instead of (5.9).

Lemma 13. For bc > −1 and b+ c �= 0, the roots of the polynomials pIN (λ) and pIIN (λ) satisfy the
interlacing property.

Proof. According to (5.2) and (5.10),

ṗIN (λ)pIIN (λ)− pIN (λ)ṗIIN (λ) = (b+ c)

∣∣∣∣
ṖN−1(λ) PN−1(λ)

ṖN (λ) PN (λ)

∣∣∣∣− bc(b+ c)

∣∣∣∣
ṖN−2(λ) PN−2(λ)

ṖN−1(λ) PN−1(λ)

∣∣∣∣

= (−1)N (b+ c)

[
N−1∑
l=1

|Pl(λ)|2 + bc
N−2∑
l=1

|Pl(λ)|2
]
,

and therefore, for bc > −1 one has

(−1)N (b+ c)−1
[
ṗIN (λ)pIIN (λ)− pIN (λ)ṗIIN (λ)

]
> 0. (5.11)

Let λ1 and λ2 be two adjacent roots of the polynomial pIN (λ) with respect to the natural order on the
imaginary axis. Since pIN (λ) has only simple roots, it follows that ṗIN (λ1) and ṗIN (λ2) have opposite
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signs. Then it follows from (5.11) that pIIN (λ1) and pIIN (λ2) have opposite signs as well. This proves that
between two roots of the polynomial pIN (λ) there lies a root of the polynomial pIIN (λ). The proof that
between two adjacent roots of the polynomial pIIN (λ) there lies a root of the polynomial pIN (λ) is similar.

Theorem 6. The polynomial pN (λ), N ≥ 2, is stable if and only if bc > −1 and b+ c < 0.

Proof. This follows from Theorem 5 and Lemmas 7–13.

6. ORTHOGONALITY AND COMPLETENESS OF EIGENVECTORS

For an arbitrary pair of vectors

u =

⎛
⎜⎜⎜⎝

u0

· · ·

uN−1

⎞
⎟⎟⎟⎠ , v =

⎛
⎜⎜⎜⎝

v0

· · ·

vN−1

⎞
⎟⎟⎟⎠ ,

we write

〈u, v〉 =
N−1∑
l=0

(−1)N−lulvl. (6.1)

In particular,

〈γk, γk′〉 =
N−1∑
l=0

(−1)N−lpl(λk)pl(λk′), k = 0, . . . , N − 1,

for the eigenvectors of the matrix A, where λk and λk′ are roots of the polynomial pN (λ).

Lemma 14. The following identities hold:
∣∣∣∣
pN−1(λ) pN−1(μ)

pN (λ) pN (μ)

∣∣∣∣ = (λ− μ)

N−1∑
l′=0

(−1)N−l′pl′(λ)pl′(μ), (6.2)

∣∣∣∣
ṗN−1(λ) pN−1(λ)

ṗN (λ) pN (λ)

∣∣∣∣ =
N−1∑
l′=0

(−1)N−l′ [pl′(λ)]
2. (6.3)

Proof. Identities (6.2) and (6.3) follow from the definition of the polynomials pl(λ) and identities (5.9)
and (5.10) for l = N .

Theorem 7. For arbitrarily chosen b and c and for all sufficiently large N , except for the case in
which b = −c = ±1 and N is even, the eigenvectors form a complete set and are orthogonal with
respect to the form (6.1):

〈γk, γk′〉 = 〈γk, γk〉δk,k′ , k, k′ = 0, . . . , N − 1, (6.4)

〈γk, γk〉 �= 0, k = 0, . . . , N − 1. (6.5)

Proof. By Theorem 4, all eigenvalues of A are simple, and therefore, the eigenvectors form a complete
set. Then (6.4) follows from (6.2) for λ = λk and μ = λk′ .

Let us verify (6.5). Assume the contrary: 〈γk, γk〉 = 0 for some simple root λk. Then

pN (λk) = 0, ṗN (λk) �= 0,

and it follows from (6.3) that

pN−1(λk) = 0.
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According to (2.7), this means that

yN−1(λk) = yN(λk) = 0.

From this and from (2.4), we see that

yl(λk) = 0, l = −1, . . . , N.

We have arrived at a contradiction.

7. APPENDIX

The motion of oscillators in a homogeneous harmonic chain is described by the system of equations

q̈l − ql+1 + 2ql − ql−1 = 0, l = 0, . . . , L− 1, (7.1)

where ql is the displacement of the lth oscillator in the chain from the equilibrium position.

To make the dynamics unambiguous, one specifies boundary conditions in addition to the initial
conditions; i.e., the displacements q−1 and qL are specified. A distinction is made between conservative
and nonconservative boundary conditions. The first ones have the following representatives:

q̇−1 = q̇L = 0, a chain with fixed ends.

q−1 = q0 and qL−1 = qL, a chain with free ends.

q−1 = q0 and q̇L = 0, a chain with free left end and fixed right end.

Any of these conditions turns (7.1) into a linear conservative system. Owing to the conservation of
total energy, the oscillations in such a system do not decay or grow unboundedly. From the viewpoint
of spectral theory, this means that the eigenfrequencies of the system are real and the eigenoscillations
form a complete system.

The simplest boundary conditions under which the energy dissipation and/or generation can occur
are the conditions

bq̇0 + q0 − q−1 = 0,

cq̇L−1 − qL + qL−1 = 0
(7.2)

or

bq̇0 + q0 − q−1 = 0,

q̇L − c(qL − qL−1) = 0,
(7.3)

where b, c ∈ R. Under these conditions, the eigenfrequencies of the system can take complex values.

Schrödinger variables. The transition from Eqs. (7.1)–(7.3) to the dynamical system (2.1), (2.2) is
carried out by means of the Schrödinger variables, which we introduce by the expressions

x2l = q̇l, x2l+1 = ql+1 − ql, l = 0, . . . , L− 1. (7.4)

Proposition 2. In the Schrödinger variables, problems (7.1), (7.2) and (7.1), (7.3) are combined
into the single boundary value problem

ẋl = xl+1 − xl−1, l = 0, . . . , N − 1, (7.5)

x−1 + bx0 = 0,

cxN−1 − xN = 0,
(7.6)

where N = 2L− 1 for problem (7.1), (7.2) and N = 2L for problem (7.1), (7.3).
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Proof. The equivalence of (7.1) and (7.5) in view of (7.4) is justified by the following chains of equalities:

ẋ2l = q̈l = ql+1 − 2ql + ql−1 = x2l+1 − x2l−1,

ẋ2l+1 = q̇l+1 − q̇l = x2l+2 − x2l.

The equivalence of boundary conditions (7.2) and (7.3) to condition (7.6) follows by a straightforward
verification using (7.4) and the relationship between the parameters L and N . Namely,

bq̇0 + q0 − q−1 = 0 ⇐⇒ bx0 + x−1 = 0,

cq̇L−1 − qL + qL−1 = 0 ⇐⇒ cx2L−2 − x2L−1 = 0 ⇐⇒ cxN−1 − xN = 0,

q̇L − c(qL − qL−1) = 0 ⇐⇒ x2L − cx2L−1 = 0 ⇐⇒ xN − cxN−1 = 0,

where N is odd in the second chain of equivalences and even in the last one.
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